Гідродинаміка фільтраційного сушіння подрібненої материнки
| Attachment | Size |
|---|---|
| 1.17 MB |
[1] Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L. M. Fruit and Vegetable Waste Management: Conventional and Emerging Approaches. J. Environ. Manage. 2020, 265, 110510. https://doi.org/10.1016/j.jenvman.2020.110510
[2] De Torre, M. P.; Vizmanos, J. L.; Cavero, R. Y.; Calvo, M. I. Improvement of Antioxidant Activity of Oregano (Origanum vulgare L.) with an Oral Pharmaceutical Form. Biomed. Pharmacother. 2020, 129, 110424. https://doi.org/10.1016/j.biopha.2020.110424
[3] Jafari Khorsand, G.; Morshedloo, M. R.; Mumivand, H. Natural Diversity in Phenolic Components and Antioxidant Properties of Oregano (Origanum vulgare L.) Accessions, Grown under the Same Conditions. Sci. Rep. 2022, 12, 5813. https://doi.org/10.1038/s41598-022-09742-4
[4] Kylymenchuk, O.; Velichko, T.; Malovanyy, M.; Umanets, A.; Hnilichenko, A.; Lahotska, A. Non-Traditional Raw Materials for Biotechnological Industries and Some Environmental Aspects of Their Disposal. Food Sci. Technol. 2020, 14, 32–38.
https://doi.org/10.15673/fst.v14i1.1652
[5] Rajendran, N.; Gurunathan, B.; Han, J.; Krishna, S.; Ananth, A.; Venugopal, K.; Priyanka, R. S. Recent Advances in Valorization of Organic Municipal Waste into Energy Using Biorefinery Approach, Environment and Economic Analysis. Bioresour. Technol. 2021, 337, 125498. https://doi.org/10.1016/j.biortech.2021.125498
[6] Jha, S.; Okolie, J. A.; Nanda, S.; Dalai, A. K. A Review of Biomass Resources and Thermochemical Conversion Technologies. Chem. Eng. Technol. 2022, 45, 791–799. https://doi.org/10.1002/ceat.202100503
[7] Knapczyk, A.; Francik, S.; Fraczek, J.; Slipek, Z. Analysis of Research Trends in Production of Solid Biofuels. Eng. Rural Dev. 2019, 18, 1503–1509. https://doi.org/10.22616/ERDev2019.18.N415
[8] Angulo-Mosquera, L. S.; Alvarado-Alvarado, A. A.; Rivas-Arrieta, M. J.; Cattaneo, C. R.; Rene, E. R.; García-Depraect, O. Production of Solid Biofuels from Organic Waste in Developing Countries: A Review from Sustainability and Economic Feasibility Perspectives. Sci. Total Environ. 2021, 795, 148816. https://doi.org/10.1016/j.scitotenv.2021.148816
[9] Zhou, C.; Fan, X.; Duan, C.; Zhao, Y. A Method to Improve Fluidization Quality in Gas–Solid Fluidized Bed for Fine Coal Beneficiation. Particuology 2019, 43, 181–192. https://doi.org/10.1016/j.partic.2017.12.012
[10] Guibunda, F. A.; Waita, S.; Nyongesa, F. W.; Snyder, G. J.; Chaciga, J. Optimizing Biomass Briquette Drying: A Computational Fluid Dynamics Approach with a Case Study in Mozambique. Energy 2024, 360, 100012. https://doi.org/10.1016/j.energ.2024.100012
[11] Potapov, V.; Yakushenko, Ye.; Grytsenko, O. Experimental Studies of the Kinetics of Temperature in Filtration Drying under Elevated Pressure. Sci. Works 2021, 85, 2064. https://doi.org/10.15673/swonaft.v85i1.2064
[12] Mykychak, B.; Biley, P.; Kindzera, D. External Heat-and-Mass Transfer during Drying of Packed Birch Peeled Veneer. Chem. Chem. Technol. 2013, 7, 191–195. https://doi.org/10.23939/chcht07.02.191
[13] Ivashchuk, O.; Atamanyuk, V.; Chyzhovych, R.; Manastyrska, V. A.; Barabakh, S. A.; Hnativ, Z. Kinetic Regularities of the Filtration Drying of Barley Brewer’s Spent Grain. Chem. Chem. Technol. 2024, 18, 66–75. https://doi.org/10.23939/chcht18.01.066
[14] Atamanyuk, V.; Gnativ, Z.; Kindzera, D.; Janabayev, D.; Khusanov, A. Hydrodynamics of Cotton Filtration Drying. Chem. Chem. Technol. 2020, 14, 426–432. https://doi.org/10.23939/chcht14.03.426
[15] Ivashchuk, O.; Chyzhovych, R.; Atamanyuk, V. Simulation of the Thermal Agent Movement Hydrodynamics through the Stationary Layer of the Alcohol Distillery Stillage. Case Stud. Chem. Environ. Eng. 2024, 9, 100566. https://doi.org/10.1016/j.cscee.2023.100566.
[16] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Drying Process during Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263–271. https://doi.org/10.23939/chcht12.02.263