Hydrodynamics of Filtration Drying of Crushed Oregano

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Alina Denysiuk1, Volodymyr Atamanyuk1, Zoriana Hnativ1
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandera Sr., Lviv 79013, Ukraine alina.r.denysiuk@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.03.511
AttachmentSize
PDF icon full_text.pdf1.17 MB
Abstract: 
The study presents the results of research into the hydrodynamics of gas flow filtration through a quasi-stationary layer during the filtration drying of crushed oregano, a pharmaceutical industry waste product remaining after the extraction of target components, as a raw material for the production of alternative solid fuel. The main geometric parameters of individual crushed oregano particles, as well as the physico-mechanical properties of the layer that settles under the influence of pressure drop, were determined experimentally. The experimental setup diagram is also provided. An analytical method was used to determine the influence of layer height settlement, changes in the equivalent diameter of channels between particles, and layer porosity on pressure losses during gas flow percolation. The results of the experimental studies are presented as functional dependencies: pressure loss ∆P = f(v₀), changes in the equivalent channel diameter dₑ = f(v₀), and layer porosity ɛ = f(v₀) as functions of the apparent gas filtration velocity. The feasibility of preparing crushed oregano for the production of feed yeast, alternative solid fuel, etc., is substantiated. The obtained results enable the prediction of energy consumption in the design of filtration drying equipment for crushed oregano.
References: 

[1] Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L. M. Fruit and Vegetable Waste Management: Conventional and Emerging Approaches. J. Environ. Manage. 2020, 265, 110510. https://doi.org/10.1016/j.jenvman.2020.110510
https://doi.org/10.1016/j.jenvman.2020.110510

[2] De Torre, M. P.; Vizmanos, J. L.; Cavero, R. Y.; Calvo, M. I. Improvement of Antioxidant Activity of Oregano (Origanum vulgare L.) with an Oral Pharmaceutical Form. Biomed. Pharmacother. 2020, 129, 110424. https://doi.org/10.1016/j.biopha.2020.110424
https://doi.org/10.1016/j.biopha.2020.110424

[3] Jafari Khorsand, G.; Morshedloo, M. R.; Mumivand, H. Natural Diversity in Phenolic Components and Antioxidant Properties of Oregano (Origanum vulgare L.) Accessions, Grown under the Same Conditions. Sci. Rep. 2022, 12, 5813. https://doi.org/10.1038/s41598-022-09742-4
https://doi.org/10.1038/s41598-022-09742-4

[4] Kylymenchuk, O.; Velichko, T.; Malovanyy, M.; Umanets, A.; Hnilichenko, A.; Lahotska, A. Non-Traditional Raw Materials for Biotechnological Industries and Some Environmental Aspects of Their Disposal. Food Sci. Technol. 2020, 14, 32-38.
https://doi.org/10.15673/fst.v14i1.1652

https://doi.org/10.15673/fst.v14i1.1652
https://doi.org/10.15673/fst.v14i1.1652

[5] Rajendran, N.; Gurunathan, B.; Han, J.; Krishna, S.; Ananth, A.; Venugopal, K.; Priyanka, R. S. Recent Advances in Valorization of Organic Municipal Waste into Energy Using Biorefinery Approach, Environment and Economic Analysis. Bioresour. Technol. 2021, 337, 125498. https://doi.org/10.1016/j.biortech.2021.125498
https://doi.org/10.1016/j.biortech.2021.125498

[6] Jha, S.; Okolie, J. A.; Nanda, S.; Dalai, A. K. A Review of Biomass Resources and Thermochemical Conversion Technologies. Chem. Eng. Technol. 2022, 45, 791-799. https://doi.org/10.1002/ceat.202100503
https://doi.org/10.1002/ceat.202100503

[7] Knapczyk, A.; Francik, S.; Fraczek, J.; Slipek, Z. Analysis of Research Trends in Production of Solid Biofuels. Eng. Rural Dev. 2019, 18, 1503-1509. https://doi.org/10.22616/ERDev2019.18.N415
https://doi.org/10.22616/ERDev2019.18.N415

[8] Angulo-Mosquera, L. S.; Alvarado-Alvarado, A. A.; Rivas-Arrieta, M. J.; Cattaneo, C. R.; Rene, E. R.; García-Depraect, O. Production of Solid Biofuels from Organic Waste in Developing Countries: A Review from Sustainability and Economic Feasibility Perspectives. Sci. Total Environ. 2021, 795, 148816. https://doi.org/10.1016/j.scitotenv.2021.148816
https://doi.org/10.1016/j.scitotenv.2021.148816

[9] Zhou, C.; Fan, X.; Duan, C.; Zhao, Y. A Method to Improve Fluidization Quality in Gas-Solid Fluidized Bed for Fine Coal Beneficiation. Particuology 2019, 43, 181-192. https://doi.org/10.1016/j.partic.2017.12.012
https://doi.org/10.1016/j.partic.2017.12.012

[10] Guibunda, F. A.; Waita, S.; Nyongesa, F. W.; Snyder, G. J.; Chaciga, J. Optimizing Biomass Briquette Drying: A Computational Fluid Dynamics Approach with a Case Study in Mozambique. Energy 2024, 360, 100012. https://doi.org/10.1016/j.energ.2024.100012
https://doi.org/10.1016/j.energ.2024.100012

[11] Potapov, V.; Yakushenko, Ye.; Grytsenko, O. Experimental Studies of the Kinetics of Temperature in Filtration Drying under Elevated Pressure. Sci. Works 2021, 85, 2064. https://doi.org/10.15673/swonaft.v85i1.2064
https://doi.org/10.15673/swonaft.v85i1.2064

[12] Mykychak, B.; Biley, P.; Kindzera, D. External Heat-and-Mass Transfer during Drying of Packed Birch Peeled Veneer. Chem. Chem. Technol. 2013, 7, 191-195. https://doi.org/10.23939/chcht07.02.191
https://doi.org/10.23939/chcht07.02.191

[13] Ivashchuk, O.; Atamanyuk, V.; Chyzhovych, R.; Manastyrska, V. A.; Barabakh, S. A.; Hnativ, Z. Kinetic Regularities of the Filtration Drying of Barley Brewer's Spent Grain. Chem. Chem. Technol. 2024, 18, 66-75. https://doi.org/10.23939/chcht18.01.066
https://doi.org/10.23939/chcht18.01.066

[14] Atamanyuk, V.; Gnativ, Z.; Kindzera, D.; Janabayev, D.; Khusanov, A. Hydrodynamics of Cotton Filtration Drying. Chem. Chem. Technol. 2020, 14, 426-432. https://doi.org/10.23939/chcht14.03.426
https://doi.org/10.23939/chcht14.03.426

[15] Ivashchuk, O.; Chyzhovych, R.; Atamanyuk, V. Simulation of the Thermal Agent Movement Hydrodynamics through the Stationary Layer of the Alcohol Distillery Stillage. Case Stud. Chem. Environ. Eng. 2024, 9, 100566. https://doi.org/10.1016/j.cscee.2023.100566.
https://doi.org/10.1016/j.cscee.2023.100566

[16] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Drying Process during Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263-271. https://doi.org/10.23939/chcht12.02.263
https://doi.org/10.23939/chcht12.02.263