Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Вплив пуцоланових добавок на властивості цементуючої матриці бетонів з заповнювачами рециклінгу

Tetiana Kropyvnytska1, Myroslav Sanytsky1, Oksana Rykhlitska1
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandera St., Lviv 79013, Ukraine tetiana.p.kropyvnytska@lpnu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
У статті описано вплив пуцоланових добавок і полікарбоксилатного суперпластифікатора на характеристики цементуючої матриці бетону із заповнювачем рециклінгу. Наведено гранулометричний склад за об’ємом і площею поверхні для золи-винесення та кремнеземного пилу, досліджено фазовий склад і мікроструктуру цементного каменю.
References: 

[1] UN Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. http://dx.doi.org/10.1016/j.cemconres.2018.03.015
[2] Pizoń, J.; Gołaszewski, J.; Alwaeli, M.; Szwan, P. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials 2020, 13, 1448. https://doi.org/10.3390/ma13061448
[3] González, M.; Caballero, P.; Fernández, D.; Vidal, M.; Bosque, I.; Martínez, C. The Design and Development of Recycled Concretes in a Circular Economy Using Mixed Construction and Demolition Waste. Materials 2021, 14, 4762. https://doi.org/10.3390/ma14164762
[4] Evangelista, L.; Brito, J. Durability Performance of Concrete Made with fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2010, 32, 9–14. https://doi:10.1016/j.cemconcomp.2009.09.005
[5] Pacheco, J.; Brito, J. Recycled Aggregates Produced from Construction and Demolition Waste for Structural Concrete: Constituents, Properties and Production. Materials 2021, 14, 5748. https://doi.org/10.3390/ma14195748
[6] Tošić, N.; Torrenti, J. New Eurocode Provisions for Recycled Aggregate Concrete and their Implications for the Design of One-Way Slabs. Build. Mater. Struct. 2021, 64, 119–125. https://doi.org/10.5937/GRMK2102119T
[7] Troian, V.; Gots, V; Keita, E.; Roussel, N.; Angst, U.; Robert, J. Challenges in Material Recycling for Postwar Reconstruction. Techn. Lett. 2022, 7, 139–149. https://doi.org/10.21809/rilemtechlett.2022.171
[8] Xie, T.; Gholampour, A.; Ozbakkaloglu, T. Toward the Development of Sustainable Concretes with Recycled Concrete Aggregates: Comprehensive Review of Studies on Mechanical Properties. J. Mater. Civ. Eng. 2018, 30, 04018211. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002304
[9] Akhtar, A.; Sarmah, A.K. Construction and Demolition Waste Generation and Properties of Recycled Aggregate Concrete: A Global Perspective. J. Clean. Prod. 2018, 186, 262–281. https://doi.org/10.1016/j.jclepro.2018.03.085
[10] Fawzy, A.; Elshami, A.; Ahmad, S. Investigating the Effects of Recycled Aggregate and Mineral Admixtures on the Mechanical Properties and Performance of Concrete. Materials 2023, 16, 5134. https://doi.org/10.3390/ma16145134
[11] Kroviakov, S.; Volchuk, V.; Zavoloka, M.; Krizhanovsky, V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Mater. Sci. Forum 2019, 968, 20–25. https://doi.org/10.4028/www.scientific.net/MSF.968.20
[12] Juenger, M.C.; Snellings, R.; Bernal, S. A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cem. Concr. Res. 2019, 122, 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008
[13] Sanytsky, M.; Rusyn, B.; Kirakevych, I.; Kaminskyy, A. Architectural Self-Compacting Concrete Based on Nano-Modified Cementitious Systems. In Proceedings of CEE 2023. Lecture Notes in Civil Engineering, vol 438; Blikharskyy, Z.; Koszelnik, P.; Lichołai, L.; Nazarko, P.; Katunský, D., Eds; Springer, Cham., 2024; рр 372–380. https://doi.org/10.1007/978-3-031-44955-0_37
[14] Sikora, P.; Lootens, D.; Liard, M.; Stephan, D. The Efects of Seawater and Nanosilica on the Performance of Blended Cements and Composites. Appl. Nanosci. 2020, 10, 5009–5026. https://doi.org/10.1007/s13204-020-01328-8
[15] Giergiczny, Z. Fly Ash and Slag. Cem. Concr. Res. 2019, 124, 105826. https://doi.org/10.1016/j.cemconres.2019.105826
[16] Chandra, L.; Hardjito, D. The Impact of Using Fly Ash, Silica Fume and Calcium Carbonate on the Workability and Compressive Strength of Mortar. Proc. Eng. 2015, 125, 773–779. https://doi.org/10.1016/j.proeng.2015.11.132
[17] Krivenko, P.; Runova, R.; Rudenko, I. Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation. East.-Eur. J. Enterp. Technol. 2017, 4(6(88), 35–41. https://doi.org/10.15587/1729-4061.2017.106803
[18] Matias, D.; Brito, De J.; Rosa, A.; Pedro D. Mechanical Properties of Concrete Produced with Recycled Coarse Aggregates–Influence of the Use of Superplasticizers. Const. Build. Mat. 2013, 44, 101–109. https://doi.org/10.1016/j.conbuildmat.2013.03.011
[19] Junak, J.; Sicakova, A. Effect of Surface Modifications of Recycled Concrete Aggregate on Concrete Properties. Buildings 2018, 8, 2. https://doi.org/10.3390/buildings8010002
[20] Sanytsky, M.; Kropyvnytska, T.; Fischer, H.-B.; Kondratieva, N. Performance of Low Carbon Modified Composite Gypsum Binders with Increased Water Resistance. Chem. Chem. Technol. 2019, 4, 495–502. https://doi.org/10.23939/chcht13.04.495
[21] Sanytsky, M.; Kropyvnytska, T.; Ivashchyshyn, H. Sustainable Modified Pozzolanic Supplementary Cementitious Materials Based on Natural Zeolite, Fly Ash and Silica Fume. IOP Conf. Ser. Earth Environ. Sci. 2023, 1254, 012004. https://doi.org/10.1088/1755-1315/1254/1/012004
[22] Singh P. Study the Effect of Fly Ash, Silica Fume and Recycled Aggregate on the Compressive Strength of Concrete. Int. J. Res. Eng. Adv. Techn. 2015, 3, 71–78. https://www.academia.edu/36958214
[23] Bedoya, M.A.; Tobón, J.I. Incidence of Recycled Aggregates and Ternary Cements on the Compressive Strength and Durability of Ecological Mortars. Case Stud. Constr. Mat. 2022, 17, 01192. https://doi.org/10.1016/j.cscm.2022.e01192
[24] Su, Y.; Yao,Y.; Wang, Y.; Zhao, X.; Li, L.; Zhang, J. Modification of Recycled Concrete Aggregate and Its Use in Concrete: An Overview of Research Progress. Materials 2023, 16, 7144. https://doi.org/10.3390/ma16227144
[25] Sun, Zh.; Xiong, J.; Cao, Sh.; Zhu, J.; Jia, X.; Hu, Z.; Liu, K. Effect of Different Fine Aggregate Characteristics on Fracture Toughness and Microstructure of Sand Concrete. Materials 2023, 16, 2080. https://doi.org/10.3390/ma16052080
[26] Krivenko, P.; Kovalchuk, O.; Boiko, O. Practical Experience of Construction of Concrete Pavement Using Non-Conditional AGGREGATES. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012089. https://doi.org/10.1088/1757-899X/708/1/012089
[27] Pushkarova, K.; Kaverin, K.; Kalantaevsky, D. Research of High–Strength Cement Compositions Modified by Complex Organic–Silica Additives. East.-Eur. J. Enterp. Technol. 2015, 5(5(77), 42–51. https://doi.org/10.15587/1729-4061.2015.51836
[28] Mironyuk, I.; Tatarchuk, T.; Paliychuk, N.; Heviuk, I.; Horpynko, A.; Yarema, O.; Mykytyn, I. Effect of Surface-Modified Fly Ash on Compressive Strength of Cement Mortar. Mater. Tod. Proc. 2021, 35, 534-537. https://doi.org/10.1016/j.matpr.2019.10.016
[29] Sanytsky, M.; Usherov-Marshak, A.; Kropyvnytska, T.; Heviuk, I. Performance of Multicomponent Portland Cements Containing Granulated Blast Furnace Slag, Zeolite, and Limestone. Cement Wapno Beton 2020, 5, 416–427. https://doi.org/10.32047/CWB.2020.25.5.7
[30] Sanytsky, M.; Kropyvnytska, T.; Shyiko, O. Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior. Chem. Chem. Technol. 2023, 17, 170–178. https://doi.org/10.23939/chcht17.01.170
[31] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386
[32] Jiménez, L.F.; Domínguez, J.A.; Vega-Azamar, R.E. Carbon Footprint of Recycled Aggregate Concrete. Adv. Civ. Eng. 2018, 2018, 949741. https://doi.org/10.1155/2018/7949741
[33] DSTU B V.2.7-187:2009. Building materials. Cements. Methods of determination of bending and compression strength; Ukrarkhbudinform: Kyiv, Ukraine, 2010.