Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Вплив модифікації поверхні на структурні та термічні властивості нановуглеців різної розмірності

Sonam Tamang1,2,3, André Wutzler4, Ralf Lach4, Wolfgang Grellmann4, Le Hong Hai5, Rameshwar Adhikari1,2,3, Sabita Shrestha1
Affiliation: 
1 Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal 2 Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal 3 Nepal Polymer Institute (NPI), P.O. Box 24411, Kathmandu, Nepal 4 Polymer Service GmbH Merseburg, Geusaer Straße 81f, 06217 Merseburg, Germany 5 Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany nepalpolymer@yahoo.com, shresthasabita@hotmail.com
DOI: 
https://doi.org/10.23939/chcht16.04.573
AttachmentSize
PDF icon full_text.pdf375.42 KB
Abstract: 
Багатошарові вуглецеві нанотрубки та графітові нанопластинки були функціоналізовані через обробку кислотою з метою подолання проблеми агломерації. За допомогою інфрачервоної спектроскопії з перетворенням Фур’є показано хімічну модифікацію нановуглеців, а загальний зв’язок між хімічною обробкою та популяцією дефектів проаналізовано Раман-спектроскопією. Інформацію про втрату маси та домішки отримано термогравіметричним аналізом. Рентгенівська дифракція показала вплив обробки кислотою на фізичні стани нановуглеців, у тому числі на кристалічну текстуру. Порівняно висока міжшарова відстань у графіті свідчить про те, що за допомогою цієї методики частинки графіту розшаровуються на листи графену з меншими розмірами частинок. Термогравіметричний аналіз підтвердив повне видалення домішок у випадку багатошарових вуглецевих нанотрубок (БШВНТ) і близько 20% домішок в окисленому графіті, що пояснюється наявністю залишкового марганцю, який міг бути введений під час процесу функціоналізації. Крім того, також спостерігали хорошу термічну стабільність у випадку БШВНТ з меншою кількістю домішок. Загалом було отримано два різних нановуглеці з добре структурованими хімічними модифікаціями з різними можливостями функціоналізації.
References: 

[1] Rodríguez-Reinoso, F. The Role of Carbon Materials in Heterogeneous Catalysis. Carbon 1998, 36 (3), 159–175. https://doi.org/10.1016/S0008-6223(97)00173-5
[2] Barroso-Bujans, F.; Verdejo, R.; Pérez-Cabero, M.; Agouram, S.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; López-Manchado, M.A. Effects of Functionalized Carbon Nanotubes in Peroxide Crosslinking of Diene Elastomers. Eur. Polym. J. 2009, 45 (4), 1017–1023. https://doi.org/10.1016/j.eurpolymj.2008.12.029
[3] Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal Conductivity of Single-Walled Carbon Nanotubes. Phys. Rev. B 1999, 59 (4). https://doi.org/10.1103/PhysRevB.59.R2514
[4] Sun, X.; Zhao, W. Prediction of Stiffness and Strength of Single-Walled Carbon Nanotubes by Molecular-Mechanics-Based Finite Element Approach. Mater. Sci. Eng. A 2005, 390 (1–2), 366–371. https://doi.org/10.1016/j.msea.2004.08.020
[5] Unger, E.; Graham, A.; Kreupl, F.; Liebau, M.; Hoenlein, W. Electrochemical Functionalization of Multi-Walled Carbon Nanotubes for Solvation and Purification. Curr. Appl. Phys. 2002, 2 (2), 107–111. https://doi.org/10.1016/s1567-1739(01)00072-4
[6] Brosseau, C.; Quéffélec, P.; Talbot, P. Microwave Characterization of Filled Polymers. J. Appl. Phys. 2001, 89 (8), 4532–4540. https://doi.org/10.1063/1.1343521
[7] Brosseau, C. Generalized Effective Medium Theory and Dielectric Relaxation in Particle-Filled Polymeric Resins. J. Appl. Phys. 2002, 91 (5), 3197–3204. https://doi.org/10.1063/1.1447307
[8] Mdarhri, A.; Carmona, F.; Brosseau, C.; Delhaes, P. Direct Current Electrical and Microwave Properties of Polymer–Multiwalled Carbon Nanotubes Composites. J. Appl. Phys. 2008, 103 (5), 054303. https://doi.org/10.1063/1.2841461
[9] Mdarhri, A.; Brosseau, C.; Carmona, F. Microwave Dielectric Properties of Carbon Black Filled Polymers under Uniaxial Tension. J. Appl. Phys. 2007, 101 (8), 084111. https://doi.org/10.1063/1.2718867
[10] Brosseau, C.; Talbot, P. Instrumentation for Microwave Frequency–Domain Spectroscopy of Filled Polymers under Uniaxial Tension. Meas. Sci. Technol. 2005, 16 (9), 1823–1832. https://doi.org/10.1088/0957-0233/16/9/015
[11] Brosseau, C.; NDong, W.; Mdarhri, A. Influence of Uniaxial Tension on the Microwave Absorption Properties of Filled Polymers. J. Appl. Phys. 2008, 104 (7), 074907. https://doi.org/10.1063/1.2988900
[12] Kumar, S.; Dang, T. D.; Arnold, F. E.; Bhattacharyya, A. R.; Min, B. G.; Zhang, X.Z.; Vaia, R. A.; Park, C.; Adams, W.W.; Hauge, R.H. [et al.] Synthesis, Structure, and Properties of PBO/SWNT Composites. Macromolecules 2002, 35 (24), 9039–9043. https://doi.org/10.1021/ma0205055
[13] Sandler, J.K.W.; Pegel, S.; Cadek, M.; Gojny, F.; van Es, M.; Lohmar, J.; Blau, W. J.; Schulte, K.; Windle, A.H.; Shaffer, M.S.P. A Comparative Study of Melt-Spun Polyamide-12 Fibres Reinforced with Carbon Nanotubes and Nanofibres. Polymer 2004, 45 (6), 2001–2015. https://doi.org/10.1016/j.polymer.2004.01.023
[14] Swain, S. K.; Prusty, G.; Ray, A. S.; Behera, L. Dispersion of Nanoplatelets of Graphite on PMMA Matrix by in situ Polymerisation Technique. J. Exp. Nanosci. 2012, 9 (3), 240–248. https://doi.org/10.1080/17458080.2012.654475
[15] Le, H. H.; Hoang, X.T.; Das, A.; Gohs, U.; Stoeckelhuber, K.-W.; Boldt, R.; Heinrich, G.; Adhikari, R.; Radusch, H.-J. Kinetics of Filler Wetting and Dispersion in Carbon Nanotube/Rubber Composites. Carbon 2012, 50 (12), 4543–4556. http://doi.org/10.1016/j.carbon.2012.05.039
[16] Hirsch, A.; Vostrowsky, O. Functionalization of Carbon Nanotubes. Top. Curr. Chem. 2005, 245, 193–237. http://doi.org/10.1007/b98169
[17] Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution Properties of Graphite and Graphene. J. Am. Chem. Soc. 2006, 128 (24), 7720–7721. https://doi.org/10.1021/ja060680r
[18] Hou, P.-X.; Liu, C.; Cheng, H.-M. Purification of Carbon Nanotubes. Carbon 2008, 46 (15), 2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009
[19] Broza, G. Synthesis, Properties, Functionalisation and Applications of Carbon Nanotube: A State of the Art Review. Chem. Chem. Technol. 2010, 4 (1), 35–45. https://doi.org/10.23939/chcht04.01.035
[20] Zeynalov, E.; Huseynov, A.; Huseynov, E.; Salmanova, N.; Nagiyev, Y.; Abdurakhmanova, N. Impact of As-Prepared and Purifıed Multi-Walled Carbon Nanotubes on the Liquid-Phase Aerobic Oxidatıon of Hydrocarbons. Chem. Chem. Technol. 2021, 15 (4), 479–485. https://doi.org/10.23939/chcht15.04.479
[21] Pittman, C.U.; He, G.-R.; Wu, B.; Gardner, S.D. Chemical Modification of Carbon Fiber Surfaces by Nitric Acid Oxidation Followed by Reaction with Tetraethylenepentamine. Carbon 1997, 35 (3), 317–331. https://doi.org/10.1016/s0008-6223(97)89608-x
[22] Pittman, C.U.; Wu, Z.; Jiang, W.; He, G.-R.; Wu, B.; Li, W.; Gardner, S.D. Reactivities of Amine Functions Grafted to Carbon Fiber Surfaces by Tetraethylenepentamine. Designing Interfacial Bonding. Carbon 1997, 35 (7), 929–943. https://doi.org/10.1016/s0008-6223(97)00047-x
[23] Djordjević, V.; Djustebek, J.; Cvetićanin, J.; Velićknović, S.; Veljković, M.; Borokov, M.; Babić Stojić, B.; Nešković, O. Methods of Purification and Characterization of Carbon Nanotubes. J. Optoelectron. Adv. Mater. 2006, 8 (4), 1631–1634. https://old.joam.inoe.ro/arhiva/pdf8_4/4Djordjevic.pdf (accessed April 10, 2022)
[24] Abuilaiwi, F.A.; Tahar, L.; Al-Harthi, M.; Atieh, M.A. Modification and Functionalization of Multiwalled Carbon Nanotube (MWCNT) via Fischer Esterification. Arab. J. Sci. Eng. 2010 35 (1C), 37–48. https://doi.org/10.13140/2.1.3447.3925
[25] Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods. J. Alloys Compd. 2010, 501 (1), 77–84. https://doi.org/10.1016/j.jallcom.2010.04.032
[26] Marshall, M.W.; Popa-Nita, S.; Shapter, J.G. Measurement of Functionalised Carbon Nanotube Carboxylic Acid Groups Using a Simple Chemical Process. Carbon 2006, 44 (7), 1137–1141. https://doi.org/10.1016/j.carbon.2005.11.010
[27] Ramin, C. Effect of Dry and Wet Oxidation of Multi-Walled Carbon Nanotubes on their Structures. Int. J. Acad. Res. 2011, 3 (2), 820–823.
[28] Chou, A.; Böcking, T.; Singh, N.K.; Gooding, J.J. Demonstration of the Importance of Oxygenated Species at the Ends of Carbon Nanotubes for Their Favourable Electrochemical Properties. Chem. Comm. 2005, 7 (7), 842–844. https://doi.org/10.1039/b415051a
[29] Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon 2008, 46 (6), 833–840. https://doi.org/10.1016/j.carbon.2008.02.012
[30] Špitalský, Z.; Krontiras, C. A.; Georga, S. N.; Galiotis, C. Effect of Oxidation Treatment of Multiwalled Carbon Nanotubes on the Mechanical and Electrical Properties of Their Epoxy Composites. Compos. - A: Appl. Sci. Manuf. 2009, 40 (6–7), 778–783. https://doi.org/10.1016/j.compositesa.2009.03.008
[31] Ciszewski, M.; Mianowski, A. Survey of Graphite Oxidation Methods Using Oxidizing Mixtures in Inorganic Acids. Chemik 2013, 67 (4), 267–274.
[32] Yudianti, R.; Onggo, H.; Sudirman; Saito, Y.; Iwata, T.; Azuma, J.-I. Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface. Open Mater. Sci. J. 2011, 5 (1), 242–247. https://doi.org/10.2174/1874088X01105010242
[33] Yadav, K.S.; Mahapatra, S.S.; Yoo, J.H.; Cho, W.J. Synthesis of Multi-walled Carbon Nanotubes/Polyhedral Oligometric Silsesquioxane Nanohybrid by Utilizing Click Chemistry. Nanoscale Res. Lett. 2011, 6 (1), 122. https://doi.org/10.1186%2F1556-276X-6-122
[34] Liu, H.; Wang, J.; Wang, J.; Cui, S. Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water. Materials 2018, 11 (12), 2442. https://doi.org/10.3390/ma11122442
[35] Chua, C.K.; Sofer, Z.; Pumera, M. Graphite Oxides: Effects of Permanganate and Chlorate Oxidants on the Oxygen Composition. Chem. Eur. J. 2012, 18 (42), 13453–13459. https://doi.org/10.1002/chem.201202320
[36] Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3 (9), 2653–2659. https://doi.org/10.1021/nn900227d
[37] Lin, Z. Functionalized Graphene for Energy Storage and Conversion. PhD Thesis, Georgia Institute of Technology, Atlanta (USA), 2014. http://hdl.handle.net/1853/51871
[38] Dewangan, R.; Asthana, A.; Singh, A.K.; Carabineiro, S.A.C. Control of Surface Functionalization of Graphene–Metal Oxide Polymer Nanocomposites Prepared by a Hydrothermal Method. Polym. Bull. 2021, 78 (8), 4665–4683. https://doi.org/10.1007/s00289-020-03342-w
[39] Murphy, H.; Papakonstantinou, P.; Okpalugo, T.I.T. Raman Study of Multiwalled Carbon Nanotubes Functionalized with Oxygen Groups. J. Vac. Sci. Technol. B:Nanotechnol. Microelectron. 2006, 24 (2), 715. https://doi.org/10.1116/1.2180257
[40] Jawhari, T.; Roid, A.; Casado, J. Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials. Carbon 1995, 33 (11), 1561–1565. https://doi.org/10.1016/0008-6223(95)00117-v
[41] Maultzsch, J.; Reich, S.; Thomsen, C.; Webster, S.; Czerw, R.; Carroll, D.L.; Vieira, S.M.; Birkett, P.R.; Rego, C.A. Raman Characterization of Boron-Doped Multiwalled Carbon Nanotubes. Appl. Phys. Lett. 2002, 81 (14), 2647–2649. https://doi.org/10.1063/1.1512330
[42] Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9 (11), 1276–1290. https://doi.org/10.1039/b613962k
[43] Scheibe, B.; Borowiak-Palen, E.; Kalenczuk, R.J. Oxidation and Reduction of Multiwalled Carbon Nanotubes – Preparation and Characterization. Mater. Charact. 2010, 61 (2), 185–191. https://doi.org/10.1016/j.matchar.2009.11.008
[44] Omalanga, S.L. Effect of Functionalized Multiwalled Carbon Nanotubes on a Polysulfone Ultrafiltration Membrane. Master Thesis, University of Witwatersrand (South Africa), 2016. http://hdl.handle.net/10539/20018
[45] Das, R.; Hamid, S.; Ali, M.E.; Ramakrishna, S.; Yongzhi, W. Carbon Nanotubes Characterization by X-Ray Powder Diffraction – A Review. Curr. Nanosci. 2015, 11 (1), 23–35. https://doi.org/10.2174/1573413710666140818210043
[46] Shalaby, A.; Nihtianova, D.; Markov, P.; Staneva, A.D.; Iordanova, R.S.; Dimitriev, Y.B. Structural Analysis of Reduced Graphene Oxide by Transmission Electron Microscopy. Bulg. Chem. Commun. 2015, 47 (1), 291–295.
[47] Gong, W.; He, D.; Tao, J.; Zhao, P.; Kong, L.; Luo, Y.; Peng, Z.; Wang, H. Formation of Defects in the Graphite Oxidization Process: A Positron Study. RSC Adv. 2015, 5 (108), 88908–88914. https://doi.org/10.1039/c5ra14660g
[48] Dillon, A.C.; Gennett, T.; Jones, K.M.; Alleman, J.L.; Parilla, P.A.; Heben, M.J. A Simple and Complete Purification of Single-walled Carbon Nanotube Materials. Adv. Mater. 1999, 11 (16), 1354–1358. https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1354::AID-ADMA1354>3.0.CO;2-N
[49] Shrestha, S.; Choi, W.C.; Song, W.; Kwon, Y.T.; Shrestha, S.P.; Park, C.-Y. Preparation and Field Emission Properties of Er-Decorated Multiwalled Carbon Nanotubes. Carbon 2010, 48 (1), 54–59. https://doi.org/10.1016/j.carbon.2009.08.029
[50] Jeong, H.-K.; Lee, Y.P.; Jin, M. H.; Kim, E.S.; Bae, J.J.; Lee, Y.H. Thermal Stability of Graphite Oxide. Chem. Phys. Lett. 2009, 470 (4–6), 255–258. https://doi.org/10.1016/j.cplett.2009.01.050
[51] Wong, C.H.A.; Sofer, Z.; Kubešová, M.; Kučera, J.; Matějková, S.; Pumera, M. Synthetic Routes Contaminate Graphene Materials with a Whole Spectrum of Unanticipated Metallic Elements. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (38), 13774–13779. https://doi.org/10.1073/pnas.1413389111