Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Синтез і дослідження властивостей епоксидно-новолакових кополімерів на основі поліциклічних бісфенолів типу норборнану

Givi Papava1, Ia Chitrekashvili1, Tamara Tatrishvili2, Marina Gurgenishvili1, Ketevan Archvadze1, Nora Dokhturishvili1, Eter Gavashelidze1, Nazi Gelashvili1, Riva Liparteliani1
Affiliation: 
1 Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University, Tbilisi 0186, Georgia 2 Ivane Javakhishvili Tbilisi State University, Department of Macromolecular Chemistry, Tbilisi 0179, Georgia ia.chitrekashvili@tsu.ge
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Метою цієї роботи був синтез кополімерів на основі новолачного олігомеру і дигліцидилового етеру поліциклічних бісфенолів типу норборнану та дослідження процесу затвердіння отриманих кополімерів. Кополімери синтезовано на основі поліциклічних бісфенолів: 4,4'-(2-норборніліден)дифеніл; 4,4'-(гексагідро-4,7-метиленіндан)-ді-о-крезол; 4,4′-(гексагідро-4,7-метиленіндан-5-іліден)дифенол; 4,4′-(декагідро-1,4,5,8-диметиленнафт-2-іліден)дифенол і 2,2-біс-(4-оксифеніл)пропан. Синтез проводили у дві стадії. На першій стадії основним хімічним процесом під час кополімеризації є взаємодія епоксидних груп з фенольними гідроксилами новолачного олігомеру, що приводить до утворення блок-кополімеру. На другій стадії процесу в результаті затвердіння утворюються полімери з тривимірною структурою. Встановлено оптимальний режим затвердіння. З отриманих кополімерів одержано склопласти, які характеризуються добрими фізико-механічними та теплофізичними властивостями.
References: 

[1] Gunka, V.; Demchuk, Y.; Drapak, I.; Korchak, B.; Bratychak, M. Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde. Chem. Chem. Technol. 2023, 17, 339–346. https://doi.org/10.23939/chcht17.02.339
[2] Nair, C. P. R. Advances in Addition-Cure Phenolic Resins. Prog. Polym. Sci. 2004, 29, 401–498. https://doi.org/10.1016/j.progpolymsci.2004.01.004
[3] Gardziella, A.; Pilato, L. A.; Knop, A. Phenolic resins: Chemistry applications, standardization, safety and ecology; Springer: New York, 2000.
[4]. Bajpai, M.; Shukla, V.; Habib, F. Development of a Heat Resistant UV-Curable Epoxy Coating. Prog. Org. Coat. 2005, 53, 239–245. https://doi.org/10.1016/j.porgcoat.2004.12.010
[5] He, H.; Li, K.; Wang, J.; Wang, J.; Gu, J.; Li, R. Effects of Novolac Resin Modification on Mechanical Properties of Carbon Fiber/Epoxy Composites. Polym. Compos. 2011, 32, 227–235. https://doi.org/10.1002/pc.21037
[6] Gibson, G. In Brydson's Plastics Materials (8th Edition), Chapter 27 - Epoxy Resins; Gilbert Marianne, Ed.; ScienceDirect 2017; pp. 773–797. https://doi.org/10.1016/B978-0-323-35824-8.00027-X
[7] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J. Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
[8] Ooi, S. K.; Cook, W. D.; Simon, G. P.; Such, C. H. DSC Studies of the Curing Mechanisms and Kinetics of DGEBA Using Imidazole Curing Agents. Polymer 2000, 41, 3639–3649. https://doi.org/10.1016/S0032-3861(99)00600-X
[9] Liu, W. B.; Qiu, Q. H.; Wang, J.; Huo, Z. C.; Sun, H. Curing Kinetics and Properties of Epoxy Resin–Fluorenyl Diamine Systems. Polymer 2008, 49, 4399–4405. https://doi.org/10.1016/j.polymer.2008.08.004
[10] Pan, G. Y.; Du, Z. J.; Zhang, C.; Li, C. J.; Yang, X. P.; Li, H.Q. Synthesis, Characterization, and Properties of Novel Novolac Epoxy Resin Containing Naphthalene Moiety. Polymer 2007, 48, 3686–3693. https://doi.org/10.1016/j.polymer.2007.04.032
[11] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499–506. https://doi.org/10.23939/chcht16.04.499
[12] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl) silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035
[13] Mukbaniani, O.; Tatrishvili, Y.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807
[14] Papava, G.Sh.; Chitrekashvili, I.A.; Dokhturishvili, N.S.; Archvadze, K. T.; Liparteliani, R.G.; Gurgenishvili, M.B. Regularities of the Reaction of Epichlorohydrin with Polycyclic Bisphenols. Oxid. Commun. 2022, 45, 760–769.
[15] Papava, G.Sh.; Chitrekashvili, I.A.; Gelashvili, N.S.; Gavashelidze, E.A.; Khotenashvili, N.S.; Papava, K.R. Study of the Formation of Epoxy Polymers Based on Diglycidal Ethers of Polycyclic Bisphenols of the Norbornane Type. Oxid. Commun. 2022, 45, 770–779.
[16] Gavashelidze, E.; Maisuradze, N.; Dokhturishvili, N.; Papava, G.; Gelashvili, N.; Molodinashvili, Z.; Gurgenishvili, M.; Chitrekashvili, I. Polyuretanes on the Basis of Card-Type Polycyclic Bisphenols Different Diisocyanates; Bull. Nat. Acad. Sci. Geo. 2012, 6, 113–116.
[17] Papava, G. Sh.; Chitrekashvili, I. A.; Gurgenishvili, M. B.; Gavashelidze, E. A.; Gelashvili, N. S.; Khotenashvili, N. S. Thermo- and Heat-Resistant Polymers Based on Diglycidyl Ethers of Bisphenols with Cyclic Substituents. Oxid. Commun. 2023, 46, 644–654.
[18] Papava, G.Sh.; Dokhturishvili, N.S.; Chitrekashvili, I.A.; Archvadze, K.T.; Liparteliani, R.G.; Tabukashvili, Z.Sh. Dependence of the Thermal Properties of Epoxy Polymers on the Hardener Structure. Oxid. Commun. 2023, 46, 655–665.
[19] Papava, G.; Gelashvili, N.; Molodinashvili, Z.; Gurgenishvili, M.; Chitrekashvili, I. Synthesis and Study of Phenol-Formaldehyde Type Polymers on the Basis of Bisphenol with Adamantane Grouping. J. Balkan Trib. Assoc. 2011, 17, 426–435.
[20] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Markarashvili, E.; Tatrishvili, T. Interpenetrating Network on the Basis of Methylcyclotetrasiloxane Matrix. Chem. Chem. Technol. 2019, 13, 1–10. https://doi.org/10.23939/chcht13.01.001
[21] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Tatrishvili, T.; Markarashvili, E. Fluorine-Containing Siloxane Based Polymer Electrolyte Membranes. Chem. Chem. Technol. 2019, 13, 407–534. https://doi.org/10.23939/chcht13.04.407
[22] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325
[23] Guo, Q.; Dean, J. M.; Grubbs, R. B.; Bates, F. S.; Block Copolymer Modified Novolac Epoxy Resin. Polym. Sci. Ser. A: Polym. Phys. 2003, 41, 1994–2003. https://doi.org/10.1002/polb.10554
[24] Tao, Z.; Yang, S.; Ge, Z.; Chen, J.; Fan, L. Synthesis and Properties of Novel Fluorinated Epoxy Resins Based on 1,1-bis(4-glycidyllesterphenyl)-1-(3′-trifuoromethylphenyl)- 2,2,2-trifluoroethane. Eur. Polym. J. 2007, 43, 550–560. https://doi.org/10.1016/j.eurpolymj.2006.10.030
[25] Paluvai, N. R.; Mohanty, S.; Nayak, S. K. Synthesis and Modification of Epoxy Resins and their Composites: A Review. Polym. Plast. Technol. Eng. 2014, 53, 1723–1758. https://doi.org/10.1080/03602559.2014.919658
[26] Cheng, J.; Li J.; Zhang, J. Y. Curing Behavior and Thermal Properties of Trifunctional Epoxy Resin Cured by 4; 4′-Diaminodiphenyl Sulfone. Express Polym. Lett. 2009, 3, 501–509. https://doi.org/10.3144/expresspolymlett.2009.62
[27] Meenakshi, K. S.; Pradeep, E.; Sudhan, J.; Kumar, S. A. Development and Characterization of New Phosphorus Based Flame Retardant Tetraglycidyl Epoxy Nanocomposites for Aerospace Application. Bull. Mat. Sci. 2012, 35, 129–136. https://doi.org/10.1007/s12034-012-0271-0
[28] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758