Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Розроблення статистичної моделі для прогнозування виробництва метану з відходів активного мулу через спільне бродіння зі стічними водами виробництва оливкової олії та гноєм великої рогатої худоби за допомогою методології поверхні відгуку

Sarra Maamri1,2, Amrani Moussa2, Moussaoui Yacine3
Affiliation: 
1 Laboratoire des sciences fondamentales, université Amar Telidji, 03000 Laghouat, Algérie 2 Laboratoire des technologies douces, valorisation, physico-chimie des matériaux biologiques et biodiversité 3 Université Kasdi Merbah Ouargla  s.maamri@univ-boumerdes.dz
DOI: 
https://doi.org/10.23939/chcht17.01.141
AttachmentSize
PDF icon full_text.pdf985.25 KB
Abstract: 
У наш час зростання кількості населення, призводить до утворення великої кількості відходів біомаси внаслідок різноманітної людської, промислової та сільсь-когосподарської діяльності. Для регулювання відходів біомаси та пом'якшення величезного спектра шкоди навколишньому середовищу застосовують переважно анаеробне бродіння. Метою цієї статті є підвищення ефективності анаеробного бродіння багатокомпонентних субстратів з використанням суміші відходів активного мулу (ВАМ), стічних вод виробництва оливкової олії (СВВОО) і гною великої рогатої худоби (ГВРХ). У плануванні експерименту використано методологію поверхні відгуку для визначення індивідуального впливу й інтерактивного ефекту на вихід метану та хімічне зниження потреби в кисні. Після числової оптимізації за допомогою Design Expert® оптимальні фактичні значення тестових факторів були такими: початкове pH = 8, співвідношення загальна хімічна потреба в кисні : загальний азот = 47, 42, спів¬відношення ГВРХ/ВАМ-СВВОО = 0,352, загальний сухий залишок ЗСЗ = 42,94 г/л. Отримані результати вказують, що ефективності анаеробного спільного бродіння можна досягти через оптимізацію складу субстрату для забезпечення більшого мікробного синергічного ефекту.
References: 

[1] Zhang, Q.; Hu, J.; Lee D.-J.; Chang, Y.; Lee, Y.-J. Sludge Treatment: Current Research Trends. Bioresour. Technol. 2017, 243, 1159-1172. https://doi.org/10.1016/j.biortech.2017.07.070
[2] Zhang, G.; Wu, Z.; Cheng, F.; Min, Z.; Lee, D.-J. Thermophilic Digestion of Waste-Activated Sludge Coupled with Solar Pond. Renew. Energ. 2016, 98, 142-147. https://doi.org/10.1016/j.renene.2016.03.052
[3] Wei, L.-L.; Zhao, Q.-L.; Hu, K.; Lee, D.-J.; Xie, C.-M.; Jiang, J.-Q. Extracellular Biological Organic Matters in Sewage Sludge During Mesophilic Digestion at Reduced Hydraulic Retention Time. Water Res. 2011, 45, 1472-1480. https://doi.org/10.1016/j.watres.2010.11.003
[4] Zhang, Y.; Chen, X.; Gu, Y.; Zhou, X. A physicochemical Method for Increasing Methane Production from Rice Straw: Extrusion Combined with Alkali Pretreatment. Appl. Energy 2015, 160, 39-48. https://doi.org/10.1016/j.apenergy.2015.09.011
[5] Wan, J.; Jing, Y.; Rao, Y.; Zhang, S.; Luo, G. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Appl. Environ. Microbiol. 2018, 84. http://dx.doi.org/10.1128/AEM.02632-17
[6] Carrère, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenès, J.-P.; Ruysschaert, G. Methane Potential of Waste Activated Sludge and Fatty Residues: Impact of Codigestion and Alkaline Pretreatments. Open Environmental Engineering Journal 2010, 3, 71-76. http://dx.doi.org/10.2174/1874829501003010071
[7] Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review. J. Hazard. Mater. 2010, 183, 1-15. https://doi.org/10.1016/j.jhazmat.2010.06.129
[8] Abelleira-Pereira, J.M.; Pérez-Elvira, S.I.; Sánchez-Oneto, J. de la Cruz, R.; Portela, J.R.; Nebot, E. Enhancement of Methane Production in Mesophilic Anaerobic Digestion of Secondary Sewage Sludge by Advanced Thermal Hydrolysis Pretreatment. Water Res. 2015, 71, 330-340. https://doi.org/10.1016/j.watres.2014.12.027
[9] Jang, H.M.; Kim, M-S.; Ha, J.H.; Park, J.M. Reactor Performance and Methanogenic Archaea Species in Thermophilic Anaerobic co-Digestion of Waste Activated Sludge Mixed with Food Wastewater. Chem. Eng. J. 2015, 276, 20-28. https://doi.org/10.1016/j.cej.2015.04.072
[10] Jing, Y.; Wan, J.; Angelidaki, I.; Zhang, S.; Luo, G. iTRAQ Quantitative Proteomic Analysis Reveals the Pathways for Methanation of Propionate Facilitated by Magnetite. Water Res. 2017, 108, 212-221. http://dx.doi.org/10.1016/j.watres.2016.10.077
[11] Zhen, G.; Lu, X.; Kobayashi, T.; Li, Y.-Y.; Xu, K.; Zhao, Y. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Appl. Energy 2015, 148, 78-86. https://doi.org/10.1016/j.apenergy.2015.03.038
[12] Fernández-Rodríguez, M.; Rincón, B.; Fermoso, F.G.; Jiménez, A.M.; Borja, R. Assessment of Two-Phase Olive Mill Solid Waste and Microalgae co-Digestion to Improve Methane Production and Process Kinetics. Bioresour. Technol. 2014, 157, 263-269. https://doi.org/10.1016/j.biortech.2014.01.096
[13] Zhang, M.; Zhang, Y.; Li, Z.; Zhang, C.; Tan, X.; Liu, X.; Wan, C.; Yang, X.; Lee, D.-J. Anaerobic co-Digestion of Food Waste/Excess Sludge: Substrates – Products Transformation and Role of NADH as an Indicator. J. Environ. Manage. 2019, 232, 197-206. https://doi.org/10.1016/j.jenvman.2018.11.087
[14] Nordlander, E.; Thorin, E.; Yan, J. Investigating the Possibility of Applying an ADM1 Based Model to a Full-Scale co-Digestion Plant. Biochem. Eng. J. 2017, 120, 73-83. https://doi.org/10.1016/j.bej.2016.12.014
[15] Anjum, M.; Khalid, A.; Qadeer, S.; Miandad, R. Synergistic Effect of co-Digestion to Enhance Anaerobic Degradation of Catering Waste and Orange Peel for Biogas Production. Waste Manag. Res. 2017, 35, 967-977. https://doi.org/10.1177/0734242X17715904
[16] Li, J.; Wei, L.; Duan, Q.; Hu, G.; Zhang, G. Semi-Continuous Anaerobic co-Digestion of Dairy Manure with Three Crop Residues for Biogas Production. Bioresour. Technol. 2014, 156, 307-313. http://dx.doi.org/10.1016/j.biortech.2014.01.064
[17] Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic co-Digestion. Bioresour. Technol. 2018, 247, 1119-1127. https://doi.org/10.1016/j.biortech.2017.09.095
[18] O-Thong, S.; Boe, K.; Angelidaki, I. Thermophilic Anaerobic co-Digestion of Oil Palm Empty Fruit Bunches with Palm Oil Mill Effluent for Efficient Biogas Production. Appl. Energy 2012, 93, 648-654. https://doi.org/10.1016/j.apenergy.2011.12.092
[19] Kashi, S.; Satari, B.; Lundin, M.; Horváth, I.S.; Othman, M. Application of a Mixture Design to Identify the Effects of Substrates Ratios and Interactions on Anaerobic co-Digestion of Municipal Sludge, Grease Trap Waste, and Meat Processing Waste. J. Environ. Chem. Eng. 2017, 5, 6156-6164. https://doi.org/10.1016/j.jece.2017.11.045
[20] Carrère, H.; Bougrier, C.; Castets, D.; Delgenès, J.P. Impact of Initial Biodegradability on Sludge Anaerobic Digestion Enhancement by Thermal Pretreatment. J. Environ. Sci. Health A 2008, 43, 1551-1555. http://dx.doi.org/10.1080/10934520802293735
[21] Heo, N.H.; Park, S.C.; Kang, H. Effects of Mixture Ratio and Hydraulic Retention Time on Single-Stage Anaerobic Co-digestion of Food Waste and Waste Activated Sludge. J. Environ. Sci. Health A 2004, 39, 1739-1756. https://doi.org/10.1081/ESE-120037874
[22] Bolzonella, D.; Battistoni, P.; Susini, C.; Cecchi, F. Anaerobic Codigestion of Waste Activated Sludge and OFMSW: The Experiences of Viareggio and Treviso Plants (Italy). Water Sci. Technol. 2006, 53, 203-211. http://dx.doi.org/10.2166/wst.2006.251
[23] Dinsdale, R.M.; Premier, G.C.; Hawkes, F.R.; Hawkes, D.L. Two-Stage Anaerobic co-Digestion of Waste Activated Sludge and Fruit/Vegetable Waste Using Inclined Tubular Digesters. Bioresour. Technol. 2000, 72, 159-168. https://doi.org/10.1016/S0960-8524(99)00105-4
[24] De Vrieze, J.; De Lathouwer, L.; Verstraete, W.; Boon, N. High-Rate Iron-Rich Activated Sludge as Stabilizing Agent for the Anaerobic Digestion of Kitchen Waste. Water Res. 2013, 47, 3732-3741. https://doi.org/10.1016/j.watres.2013.04.020
[25] Sun, Y.; Wang, D.; Qiao, W.; Wang, W.; Zhu, T. Anaerobic co-Digestion of Municipal Biomass Wastes and Waste Activated Sludge: Dynamic Model and Material Balances. J. Environ. Sci. 2013, 25, 2112-2122. https://doi.org/10.1016/S1001-0742(12)60236-8
[26] Silvestre, G.; Illa, J.; Fernández, B.; Bonmatí, A. Thermophilic Anaerobic co-Digestion of Sewage Sludge with Grease Waste: Effect of Long Chain Fatty Acids in the Methane Yield and its Dewatering Properties. Appl. Energy 2014, 117, 87-94. https://doi.org/10.1016/j.apenergy.2013.11.075
[27] Di Maria, F.; Micale, C.; Contini, S. Energetic and Environmental Sustainability of the co-Digestion of Sludge with Bio-Waste in a Life Cycle Perspective. Appl. Energy 2016, 171, 67-76. https://doi.org/10.1016/j.apenergy.2016.03.036
[28] Di Maria, F.; Sordi, A.; Cirulli, G.; Micale, C. Amount of Energy Recoverable from an Existing Sludge Digester with the co-Digestion with Fruit and Vegetable Waste at Reduced Retention Time. Appl. Energy 2015, 150, 9-14. https://doi.org/10.1016/j.apenergy.2015.01.146
[29] Tsapekos, P.; Kougias, P.G.; Treu, L.; Campanaro, S.; Angelidaki, I. Process Performance and Comparative Metagenomic Analysis During co-Digestion of Manure and Lignocellulosic Biomass for Biogas Production. Appl. Energy 2017, 185, 126-135. https://doi.org/10.1016/j.apenergy.2016.10.081
[30] Zheng, Z.; Liu, J.; Yuan, X.; Wang, X.; Zhu, W.; Yang, F.; Cui, Z. Effect of Dairy Manure to Switchgrass co-Digestion Ratio on Methane Production and the Bacterial Community in Batch Anaerobic Digestion. Appl. Energy 2015, 151, 249-257. https://doi.org/10.1016/j.apenergy.2015.04.078
[31] APHA. Standard methods for the examination of water and wastewater; 20th Ed.; American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC, 1998.
[32] González-Fernández, C.; Molinuevo-Salces, B.; García-González, M.C. Evaluation of Anaerobic Codigestion of Microalgal Biomass and Swine Manure Via Response Surface Methodology. Appl. Energy 2011, 88, 3448-3453. https://doi.org/10.1016/j.apenergy.2010.12.035
[33] Babaki, M.; Yousefi, M.; Habibi Z.; Mohammadi, M. Process Optimization for Biodiesel Production from Waste Cooking Oil Using Multi-Enzyme Systems Through Response Surface Methodology. Renew. Energ. 2017, 105, 465-472. https://doi.org/10.1016/j.renene.2016.12.086
[34] Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science; John Wiley & Sons: Hoboken, 2003.
[35] Myers, R.H.; Montgomery, D.C. Response surface methodology: process and product optimisation using designed experiments; Wiley: New York; 1995.
[36] Qian, J.; Du, X.; Zhang, B.; Fan, B.; Yang, X.; Optimization of QR Code Readability in Movement State Using Response Surface Methodology for Implementing Continuous Chain Traceability. Comput. Electron. Agric. 2017, 139, 56-64. https://doi.org/10.1016/j.compag.2017.05.009
[37] Rostamian, H.; Lotfollahi, M.N. New Functionality for Energy Parameter of Redlich-Kwong Equation of State for Density Calculation of Pure Carbon Dioxide and Ethane in Liquid, Vapor and Supercritical Phases. Period. Polytech. Chem. Eng. 2016, 60, 93-97. http://dx.doi.org/10.3311/PPch.8221
[38] Niladevi, K.N.; Sukumaran, R.K.; Jacob, N.; Anisha, G.S.; Prema, P. Optimization of Laccase Production From a Novel Strain—Streptomyces Psammoticus Using Response Surface Methodology. Microbiol. Res. 2009, 164, 105-113. https://doi.org/10.1016/j.micres.2006.10.006
[39] Lay, J.-J.; Li, Y.-Y.; Noike, T. Influences of pH and Moisture Content on the Methane Production in High-Solids Sludge Digestion. Water Res. 1997, 31, 1518-1524. https://doi.org/10.1016/S0043-1354(96)00413-7
[40] Gueguim Kana, E.B.; Oloke, J.K.; Lateef, A.; Adesiyan, M.O. Modeling and Optimization of Biogas Production on Saw Dust and Other co-Substrates Using Artificial Neural Network and Genetic Algorithm. Renew. Energy 2012, 46, 276-281. https://doi.org/10.1016/j.renene.2012.03.027
[41] Pishgar, R.; Hamza, R.A.; Tay, J.H. Augmenting Lagoon Process Using Reactivated Freeze-dried Biogranules. Appl. Biochem. Biotechnol. 2017, 183, 137-154. https://doi.org/10.1007/s12010-017-2435-2
[42] Mao, C.; Wang, X.; Xi, J.; Feng, Y.; Ren, G. Linkage of Kinetic Parameters with Process Parameters and Operational Conditions During Anaerobic Digestion. Energy 2017, 135, 352-360. https://doi.org/10.1016/j.energy.2017.06.050
[43] Suschka, J.; Kowalski, E.; Mazierski, J.; Grübel, K. Alkaline Solubilisation of Waste Activated Sludge (WAS) for Soluble Organic Substrate – (SCOD) Production. Arch. Environ. Prot. 2015, 41, 29-38. http://dx.doi.org/ 10.1515/aep-2015-0012
[44] Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. J. Biosci. Bioeng. 2003, 95, 271-275. https://doi.org/10.1016/S1389-1723(03)80028-2
[45] Angelidaki, I.; Ahring, B.K.; Deng, H.; Schmidt, J.E. Anaerobic Digestion of Olive Oil Mill Effluents Together with Swine Manure in UASB Reactors. Water Sci. Technol. 2002, 45, 213-218. https://doi.org/10.2166/wst.2002.0334
[46] Al-Mallahi, J.; Furuichi, T.; Ishii, K. Appropriate Conditions for Applying Naoh-Pretreated Two-Phase Olive Milling Waste for Codigestion with Food Waste to Enhance Biogas Production. Waste Manage. 2016, 48, 430-439. https://doi.org/10.1016/j.wasman.2015.10.009
[47] Carrere, H.; Passos, F.; Antonopoulou, G.; Rouches, E.; Affes, R.; Battimelli, A.; Ferrer, I.; Steyer, J.P.; Lyberatos, G. Enhancement of Anaerobic Digestion Performance: Which Pretreatment for Which Waste? Proceedings of the 5th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng14), August 25-28, 2014, Rio de Janeiro 2014.
[48] Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The Anaerobic co-Digestion of Food Waste and Cattle Manure. Bioresour. Technol. 2013, 129, 170-176. https://doi.org/10.1016/j.biortech.2012.10.138
[49] Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sust. Energ. Rev. 2015, 45, 540-555. https://doi.org/10.1016/j.rser.2015.02.032
[50] Zhang, P.; Chen, Y.; Zhou, Q.; Zheng, X.; Zhu, X.; Zhao, Y. Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation: Kinetics and Microbiology. Environ. Sci. Technol. 2010, 44, 9343-9348. https://doi.org/10.1021/es102878m
[51] Welte, C.; Kröninger, L.; Deppenmeier, U. Experimental Evidence of an Acetate Transporter Protein and Characterization of Acetate Activation in Aceticlastic Methanogenesis of Methanosarcina Mazei. FEMS Microbiol. Lett. 2014, 359, 147-153. https://doi.org/10.1111/1574-6968.12550
[52] Wormald, R.M.; Rout, S. P.; Mayes, W.; Gomes, H.; Humphreys, P.N. Hydrogenotrophic Methanogenesis Under Alkaline Conditions. Front. Microbiol. 2020, 11, 614227. https://doi.org/10.3389/fmicb.2020.614227
[53] Xu, J.; Bu, F.; Zhu, W.; Luo, G.; Xie, L. Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms 2020, 8, 772. https://doi.org/10.3390/microorganisms8050772
[54] Jin, Q.; Kirk, M.F. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018, 6, 21. https://doi.org/10.3389/fenvs.2018.00021
[55] Carrere, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenes, J.P.; Motte, C. Improving Methane Production During the Codigestion of Waste-Activated Sludge and Fatty Wastewater: Impact of Thermo-Alkaline Pretreatment on Batch and Semi-Continuous Processes. Chem. Eng. J. 2012, 210, 404-409. https://doi.org/10.1016/j.cej.2012.09.005
[56] Li, J.; Rui, J.; Yao, M.; Zhang, S.; Yan, X.; Wang, Y.; Yan, Z.; Li, X. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure. Front. Microbiol. 2015, 6, 1337. http://dx.doi.org/10.3389/fmicb.2015.01337
[57] Oleszek, M.; Krzemińska, I. Enhancement of Biogas Production by Co-Digestion of Maize Silage with Common Goldenrod Rich in Biologically Active Compounds. Bioresources 2017, 12, 704-714. http://dx.doi.org/10.15376/biores.12.1.704-714
[58] Barragán-Trinidad, M.; Carrillo-Reyes, J.; Buitrón, G. Hydrolysis of Microalgal Biomass Using Ruminal Microorganisms as a Pretreatment to Increase Methane Recovery. Bioresour. Technol. 2017, 244, 100-107. https://doi.org/10.1016/j.biortech.2017.07.117

[59] Oz, N.A.; Uzun, A.C. Ultrasound Pretreatment for Enhanced Biogas Production from Olive Mill Wastewater. Ultrason. Sonochem. 2015, 22, 565-572. https://doi.org/10.1016/j.ultsonch.2014.04.018
[60] Zhang, Y.; Yan, L.; Chi, L.; Long, X.; Mei, Z.; Zhang, Z. Startup and Operation of Anaerobic EGSB Reactor Treating Palm Oil Mill Effluent. J. Environ. Sci. (China) 2008, 20, 658-663. https://doi.org/10.1016/S1001-0742(08)62109-9
[61] Khoufi, S.; Louhichi, A.; Sayadi, S. Optimization of Anaerobic co-Digestion of Olive Mill Wastewater and Liquid Poultry Manure in Batch Condition and Semi-Continuous Jet-Loop Reactor. Bioresour. Technol. 2015, 182, 67-74. https://doi.org/10.1016/j.biortech.2015.01.092
[62] Gonçalves, M.R.; Costa, J.C.; Marques, I.P.; Alves, M.M. Strategies for Lipids and Phenolics Degradation in the Anaerobic Treatment of Olive Mill Wastewater. Water Res. 2012, 46, 1684-1692. http://dx.doi.org/10.1016/j.watres.2011.12.046
[63] Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenès, J.-P.; Steyer, J.-P.; Escudié, R. Total Solids Content Drives High Solid Anaerobic Digestion via Mass Transfer Limitation. Bioresour. Technol. 2012, 111, 55-61. http://dx.doi.org/10.1016/j.biortech.2012.01.174