Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Розробка та термічні дослідження модифікованої октадеканової кислоти як матеріалу для зберігання енергії

Reza Abdu Rahman1, Nicco Plamonia2, Dibyo Setiawan3, Robertus Dhimas Dhewangga Putra4
Affiliation: 
1 Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, DKI Jakarta 12640, Indonesia 2 Pusat Riset Lingkungan dan Teknologi Bersih, Badan Riset dan Inovasi Nasional, Serpong, 15314, Tangerang Selatan, Indonesia 3 Department of Mechanical Engineering, Politeknik Negeri Bandung, Bandung Barat 40559, Indonesia 4 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia reza.a@univpancasila.ac.id
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Розроблено та досліджено модифіковану октадеканову кислоту (МОК) як матеріал для зберігання енергії. Температурний перехід для МОК зменшено на 1,03°C і 2,56°C. У результаті МОК має високу частку енергії в рідкій зоні, близько 25% і 33,5%, що ефективно підвищує рівень заряду системи зберігання.
References: 

[1] Ismail, I.; Rahman, R. A.; Haryanto, G.; Pane, E. A. The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration. Int. J. Renew. Energy Res. 2021, 11, 595–599. https://dorl.net/dor/20.1001.1.13090127.2021.11.2.10.9
[2] Suyitno, B. M.; Rahman, R. A.; Sukma, H.; Rahmalina, D. The Assessment of Reflector Material Durability for Concentrated Solar Power Based on Environment Exposure and Accelerated Aging Test. Eastern-European J. Enterp. Technol. 2022, 6 (12–120), 22–29. https://doi.org/10.15587/1729-4061.2022.265678
[3] Khademi, A.; Abtahi Mehrjardi, S. A.; Tiari, S.; Mazaheri, K.; Shafii, M. B. Thermal Efficiency Improvement of Brayton Cycle in the Presence of Phase Change Material. Int. Conf. Fluid Flow, Heat Mass Transf. 2022, 135, 1–9. https://doi.org/10.11159/ffhmt22.135
[4] Mohammad Firman, L. O.; Adji, R. B.; Ismail; Rahman, R. A. Increasing the Feasibility and Storage Property of Cellulose-Based Biomass by Forming Shape-Stabilized Briquette with Hydrophobic Compound. Case Stud. Chem. Environ. Eng. 2023, 8, 100443. https://doi.org/10.1016/j.cscee.2023.100443
[5] Praveenkumar, T. R.; Sekar, M.; Pasupuleti, R. R.; Gavurová, B.; Arun Kumar, G.; Vignesh Kumar, M. Current Technologies for Plastic Waste Treatment for Energy Recovery, It’s Effects on Poly Aromatic Hydrocarbons Emission and Recycling Strategies. Fuel 2024, 357, 129379. https://doi.org/10.1016/j.fuel.2023.129379
[6] Khademi, A.; Darbandi, M.; Schneider, G. E. Numerical Study to Optimize the Melting Process of Phase Change Material Coupled with Extra Fluid. AIAA Scitech 2020 Forum 2020, 1 PartF, 1–6. https://doi.org/10.2514/6.2020-1932
[7] Ali, S.; Mehrjardi, A.; Khademi, A.; Fazli, M. Optimization of a Thermal Energy Storage System Enhanced with Fins Using Generative Adversarial Networks Method. Therm. Sci. Eng. Prog. 2024, 49, 102471. https://doi.org/10.1016/j.tsep.2024.102471
[8] Suyitno, B. M.; Ismail, I.; Rahman, R. A. Improving the Performance of a Small-Scale Cascade Latent Heat Storage System by Using Gradual Melting Temperature Storage Tank. Case Stud. Therm. Eng. 2023, 45, 103034. https://doi.org/10.1016/j.csite.2023.103034
[9] Dsilva Winfred Rufuss, D.; Rajkumar, V.; Suganthi, L.; Iniyan, S. Studies on Latent Heat Energy Storage (LHES) Materials for Solar Desalination Application-Focus on Material Properties, Prioritization, Selection and Future Research Potential. Sol. Energy Mater. Sol. Cells 2019, 189, 149–165. https://doi.org/10.1016/j.solmat.2018.09.031
[10] Ismail, I.; Syahbana, M. S. L.; Rahman, R. A. Thermal Performance Assessment for an Active Latent Heat Storage Tank by Using Various Finned-Coil Heat Exchangers. Int. J. Heat Technol. 2022, 40, 1470–1477. https://doi.org/10.18280/ijht.400615
[11] Khademi, A.; Favakeh, A.; Darbandi, M.; Shafii, M. B. Numerical and Experimental Study of Phase Change Material Melting Process in an Intermediate Fluid. In 7th International Conference on Energy Research and Development; ICERD 2019; pp 16–23.
[12] Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty Acids as Phase Change Materials: A Review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. https://doi.org/10.1016/j.rser.2013.08.107
[13] Suyitno, B. M.; Pane, E. A.; Rahmalina, D.; Rahman, R. A. Improving the Operation and Thermal Response of Multiphase Coexistence Latent Storage System Using Stabilized Organic Phase Change Material. Results Eng. 2023, 18, 101210. https://doi.org/10.1016/j.rineng.2023.101210
[14] Cao, X.; Zhang, R.; Zhang, N.; Chen, L.; Chen, D.; Li, X. Performance Improvement of Lauric Acid-1-Hexadecanol Eutectic Phase Change Material with Bio-Sourced Seashell Powder Addition for Thermal Energy Storage in Buildings. Constr. Build. Mater. 2023, 366, 130223. https://doi.org/10.1016/j.conbuildmat.2022.130223
[15] Zhang, X.; Wang, X.; Zhong, C.; Lin, Q. Ultrathin-Wall Mesoporous Surface Carbon Foam Stabilized Stearic Acid as a Desirable Phase Change Material for Thermal Energy Storage. J. Ind. Eng. Chem. 2020, 85, 208–218. https://doi.org/10.1016/j.jiec.2020.02.003
[16] Xie, B.; Li, C.; Chen, J.; Wang, N. Exfoliated 2D Hexagonal Boron Nitride Nanosheet Stabilized Stearic Acid as Composite Phase Change Materials for Thermal Energy Storage. Sol. Energy 2020, 204, 624–634. https://doi.org/10.1016/j.solener.2020.05.004
[17] Zhao, X.; Li, C.; Bai, K.; Xie, B.; Chen, J.; Liu, Q. Multiple Structure Graphite Stabilized Stearic Acid as Composite Phase Change Materials for Thermal Energy Storage. Int. J. Min. Sci. Technol. 2022, 32, 1419–1428. https://doi.org/10.1016/j.ijmst.2022.10.003
[18] Ao, C.; Yan, S.; Zhao, S.; Hu, W.; Zhao, L.; Wu, Y. Stearic Acid/Expanded Graphite Composite Phase Change Material with High Thermal Conductivity for Thermal Energy Storage. Energy Reports 2022, 8, 4834–4843. https://doi.org/10.1016/j.egyr.2022.03.172
[19] Gandhi, M.; Kumar, A.; Elangovan, R.; Meena, C. S.; Kulkarni, K. S.; Kumar, A.; Bhanot, G.; Kapoor, N. R. A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings. Sustain. 2020, 12, 1–17. https://doi.org/10.3390/su12229481
[20] Qu, Y.; Wang, S.; Tian, Y.; Zhou, D. Comprehensive Evaluation of Paraffin-HDPE Shape Stabilized PCM with Hybrid Carbon Nano-Additives. Appl. Therm. Eng. 2019, 163, 114404. https://doi.org/10.1016/j.applthermaleng.2019.114404
[21] Sciacovelli, A.; Navarro, M. E.; Jin, Y.; Qiao, G.; Zheng, L.; Leng, G.; Wang, L.; Ding, Y. High Density Polyethylene (HDPE) — Graphite Composite Manufactured by Extrusion: A Novel Way to Fabricate Phase Change Materials for Thermal Energy Storage. Particuology 2018, 40, 131–140. https://doi.org/10.1016/j.partic.2017.11.011
[22] Lv, Y.; Yang, X.; Li, X.; Zhang, G.; Wang, Z.; Yang, C. Experimental Study on a Novel Battery Thermal Management Technology Based on Low Density Polyethylene-Enhanced Composite Phase Change Materials Coupled with Low Fins. Appl. Energy 2016, 178, 376–382. https://doi.org/10.1016/j.apenergy.2016.06.058
[23] Harmen, Y.; Chhiti, Y.; Alaoui, F. E. M. H.; Bentiss, F.; Elkhouakhi, M.; Deshayes, L.; Jama, C.; Duquesne, S.; Bensitel, M. Storage Efficiency of Paraffin-LDPE-MWCNT Phase Change Material for Industrial Building Applications. 2020 5th Int. Conf. Renew. Energies Dev. Countries, REDEC 2020 2020, 5, 1–6. https://doi.org/10.1109/REDEC49234.2020.9163856
[24] Kyriaki, E.; Konstantinidou, C.; Giama, E.; Papadopoulos, A. M. Life Cycle Analysis (LCA) and Life Cycle Cost Analysis (LCCA) of Phase Change Materials (PCM) for Thermal Applications: A Review. Int. J. Energy Res. 2018, 42, 3068–3077. https://doi.org/10.1002/er.3945
[25] Qu, Y.; Zhou, D.; Xue, F.; Cui, L. Multi-Factor Analysis on Thermal Comfort and Energy Saving Potential for PCM-Integrated Buildings in Summer. Energy Build. 2021, 241, 110966. https://doi.org/10.1016/j.enbuild.2021.110966
[26] Weng, J.; Huang, Q.; Li, X.; Zhang, G.; Ouyang, D.; Chen, M.; Yuen, A. C. Y.; Li, A.; Lee, E. W. M.; Yang, W. et al. Safety Issue on PCM-Based Battery Thermal Management: Material Thermal Stability and System Hazard Mitigation. Energy Storage Mater. 2022, 53, 580–612. https://doi.org/10.1016/j.ensm.2022.09.007
[27] Kim, S.; Seo, J.; Drzal, L. T. Improvement of Electric Conductivity of LLDPE Based Nanocomposite by Paraffin Coating on Exfoliated Graphite Nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2010, 41, 581–587. https://doi.org/10.1016/j.compositesa.2009.05.002
[28] Rahmalina, D.; Zada, A. R.; Soefihandini, H.; Ismail, I.; Suyitno, B. M. Analysis of the Thermal Characteristics of the Paraffin Wax/High-Density Polyethylene (HDPE) Composite as a Form-Stable Phase Change Material (FSPCM) for Thermal Energy Storage. Eastern-European J. Enterp. Technol. 2023, 1 (6 (121)), 6–13. https://doi.org/10.15587/1729-4061.2023.273437
[29] Liu, C.; Xiao, T.; Zhao, J.; Liu, Q.; Sun, W.; Guo, C.; Ali, H. M.; Chen, X.; Rao, Z.; Gu, Y. Polymer Engineering in Phase Change Thermal Storage Materials. Renew. Sustain. Energy Rev. 2023, 188, 113814. https://doi.org/10.1016/j.rser.2023.113814
[30] Stasevych, M.; Zvarych, V.; Dronik, M.; Sozanskyi, M.; Khomyak, S. Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation. Chem. Chem. Technol. 2023, 17, 510–517. https://doi.org/10.23939/chcht17.03.510
[31] Ode, L.; Firman, M.; Rahmalina, D.; Rahman, R. A. Hybrid Energy-Temperature Method ( HETM ): A Low-Cost Apparatus and Reliable Method for Estimating the Thermal Capacity of Solid – Liquid Phase Change Material for Heat Storage System. HardwareX 2023, 16, e00496. https://doi.org/10.1016/j.ohx.2023.e00496
[32] Abtahi Mehrjardi, S.A.; Khademi, A.; Said, Z.; Ushak, S.; Chamkha, A.J. Enhancing Latent Heat Storage Systems: The Impact of PCM Volumetric Ratios on Energy Storage Rates with Auxiliary Fluid Assistance. Energy Nexus 2023, 11, 100227. https://doi.org/10.1016/j.nexus.2023.100227
[33] Muliawan, B.; Anggrainy, R.; Plamonia, N.; Abdu, R. Preliminary Characterization and Thermal Evaluation of a Direct Contact Cascaded Immiscible Inorganic Salt / High-Density Polyethylene as Moderate Temperature Heat Storage Material. Results Mater. 2023, 19, 100443. https://doi.org/10.1016/j.rinma.2023.100443
[34] Bilonoga, Y.; Atamanyuk, V.; Stybel, V.; Dutsyak, I.; Drachuk, U. Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking Into Account Surface Forces of Heat Carriers. Chem. Chem. Technol. 2023, 17, 608–616. https://doi.org/10.23939/chcht17.03.608
[35] Wu, R.; Gao, W.; Zhou, Y.; Wang, Z.; Lin, Q. A Novel Three-Dimensional Network-Based Stearic Acid/Graphitized Carbon Foam Composite as High-Performance Shape-Stabilized Phase Change Material for Thermal Energy Storage. Compos. Part B Eng. 2021, 225, 109318. https://doi.org/10.1016/j.compositesb.2021.109318
[36] Ouis, N.; Belarbi, A.; Mesli, S.; Benharrats, N. Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites. Chem. Chem. Technol. 2023, 17, 118–125. https://doi.org/10.23939/chcht17.01.118