Особливості кінетики процесу набрякання полімерних матеріалів у сумішевому дизельному паливі
Attachment | Size |
---|---|
full_text.pdf | 78.5 KB |
Keywords:
[1] Papeikin, O.; Bodachivska, L.; Venger, I. Waste Food Oils as Components of Eco-Friendly Grease. Chem. Chem. Technol. 2023, 17, 431–437 https://doi.org/10.23939/chcht17.02.431
[2] Mohammed, A.T.; Jaafar, M.N.M.; Othman, N.; Veza, I.; Mohammed, B.; Oshadumi, F.A.; Sanda, H.Y. Soil Fertility Enrichment Potential of Jatropha Curcas for Sustainable Agricultural Production: A Case Study of Birnin Kebbi, Nigeria. Ann. Rom. Soc. Cell Biol. 2021, 25, 21061–21073.
[3] Datta, A.; Mandal, B.K. A Comprehensive Review of Biodiesel as an Alternative Fuel for Compression Ignition Engine. Renewable Sustainable Energy Rev. 2016, 57, 799–821. https://doi.org/10.1016/j.rser.2015.12.170
[4] Konovalov, S.; Patrylak, L.; Zubenko, S.; Okhrimenko, M.; Yakovenko, A.; Levterov, A.; Avramenko, A. Alkali Synthesis of Fatty Acid Butyl and Ethyl Esters and Comparative Bench Motor Testing of Blended Fuels on their Basis. Chem. Chem. Technol. 2021, 15, 105–117. https://doi.org/10.23939/chcht15.01.105
[5] Chuah, L.F.; Bokhari, A.; Asif, S.; Klemeš, J.J.; Dailin, D.J.; El Enshasy, H.; Yusof, A.H.M. A Review of Performance and Emission Characteristic of Engine Diesel Fuelled by Biodiesel. Chem. Eng. Trans. 2022, 94, 1099–1104. https://doi.org/10.3303/CET2294183
[6] Popytailenko, D.; Shevchenko, O. Improved Method for Determining Microbiological Contamination of Fatty Acid Methyl Esters and Blended Diesel Fuels. Chem. Chem. Technol. 2023, 17, 203–210. https://doi.org/10.23939/chcht17.01.203
[7] Singh, S.P.; Singh, D. Biodiesel Production through the Use of Different Sources and Characterization of Oils and their Esters as the Substitute of Diesel: A Review. Renewable Sustainable Energy Rev. 2010, 14, 200–216. https://doi.org/10.1016/j.rser.2009.07.017
[8] Haseeb, A.S.M.A.; Masjuki, H.H.; Ann, L.J.; Fazal, M.A. Corrosion Characteristics of Copper and Leaded Bronze in Palm Biodiesel. Fuel Process. Technol. 2010, 91, 329–334. https://doi.org/10.1016/j.fuproc.2009.11.004
[9] Haseeb, A.S.M.A.; Sia, S.Y.; Fazal, M.A.; Masjuki, H.H. Effect of Temperature on Tribological Properties of Palm Biodiesel. Energy 2010, 35, 1460–1464. https://doi.org/10.1016/j.energy.2009.12.001
[10] Chandran, D. Compatibility of Diesel Engine Materials with Biodiesel Fuel. Renew. Energ. 2020, 147, 89–99. https://doi.org/10.1016/j.renene.2019.08.040
[11] Kass, M.; Janke, C.; Connatser, R.; West, B.; Szybist, J.; Sluder, S. Influence of Biodiesel Decomposition Chemistry on Elastomer Compatibility. Fuel 2018, 233, 714–723. https://doi.org/10.1016/j.fuel.2018.06.107
[12] Maru, M.M.; Lucchese, M.M.; Legnani, C.; Quirino, W.G.; Balbo, A.; Aranha, I.B.; Costa, L.T.; Vilani, C.; de Sena, L.A.; Damasceno, J.C. et al. Biodiesel compatibility with carbon steel and HDPE parts. Fuel Process. Technol. 2009, 90, 1175–1182.
[13] Linhares, F.N.; Gabriel, C.F.S.; Sousa, A.M.F.D.; Leite, M.C.A.M.; Furtado, C.R.G. Nitrile Rubber and Carboxylated Nitrile Rubber Resistance to Soybean Biodiesel. Polímeros 2018, 28, 23–29. https://doi.org/10.1590/0104-1428.09816
[14] Zhao, J.; Yang, R.; Iervolino, R.; Barbera, S. Changes of Chemical Structure and Mechanical Property Levels During Thermo-Oxidative Aging of NBR. Rubber Chem. Technol. 2013, 86, 591–603. https://doi.org/10.5254/RCT.13.87969
[15] Akhlaghi, S.; Hedenqvist, M.S.; Conde Braña, M.T.; Bellander, M.; Gedde, U.W. Deterioration of Acrylonitrile Butadiene Rubber in Rapeseed Biodiesel. Polym. Degrad. Stab. 2015, 111, 211–222. https://doi.org/10.1016/j. polymdegradstab.2014.11.012
[16] Mostafa, A.; Abouel-Kasem, A.; Bayoumi, M.R.; El-Sebaie, M.G. The Influence of CB Loading on Thermal Aging Resistance of SBR and NBR Rubber Compounds under Different Aging Temperature. Mater. Des. 2009, 30, 791–795. https://doi.org/10.1016/j.matdes.2008.05.065
[17] Fazal, M.A.; Rubaiee, S.; Al-Zahrani, A. Overview of the Interactions between Automotive Materials and Biodiesel Obtained from Different Feedstocks. Fuel Process. Technol. 2019, 196, 106178. https://doi.org/10.1016/j.fuproc.2019.106178
[18] Bessee, G.B.; Fey, J.P. Compatibility of Elastomers and Metals in Biodiesel Fuel Blends. Society of Automotive Engineers paper 1997, 971690, https://doi.org/10.4271/971690
[19] Haseeb, A.S.M.A.; Fazal, M.A.; Jahirul, M.I.; Masjuki, H.H. Compatibility of Automotive Materials in Biodiesel: A Review. Fuel 2011, 90, 922–931. https://doi.org/10.1016/j.fuel.2010.10.042
[20] Linhares, F.N.; Corrêa, H.L.; Khalil, C.N.; Leite, M.C.A.M.; Furtado, C.R.G. Study of the Compatibility of Nitrile Rubber with Brazilian Biodiesel. Energy 2013, 49, 102–106. https://doi.org/10.1016/j.energy.2012.10.040
[21] Veza, I.; Zainuddin, Z.; Tamaldin, N.; Idris, M.; Irianto, I.; Fattah, I.M.R. Effect of Palm Oil Biodiesel Blends (B10 and B20) on Physical and Mechanical Properties of Nitrile Rubber Elastomer. Results Eng. 2022, 16, 100787. https://doi.org/10.1016/j.rineng.2022.100787
[22] Shevchenko, O.; Popytailenko, D. Book of Abstracts, VI International Science and Technology conf. Modern technologies of fossil fuel processing, Kharkiv, April, 11-12, 2023, Kharkiv: NTU "KhPI", 2023.
[23] Shevchenko, O.; Popytailenko, D. Book of Abstracts, IX International Scientific-Technical Conference theory and practice of rational use of traditional and alternative fuels and lubricants, Kyiv – Warsaw, July, 03-07, 2023, K.: Center for Education Literature, 2023.
[24] Kittur, M.I.; Andriyana, A.; Ang, B.C.; Ch'ng, S.Y.; Mujtaba, M.A. A Swelling of Rubber in Blends of Diesel and Cottonseed Oil Biodiesel. Polym. Test. 2021, 96, 107116. https://doi.org/10.1016/j.polymertesting.2021.107116
[25] Schott, H. Swelling Kinetics of Polymers. J. Macromol. Sci. Part B Phys. 1992, 31, 1–9. https://doi.org/10.1080/00222349208215453
[26] Bielokon, Yu.O.; Ohinskyi, Y.K.; Bielokon, K.V.; Zherebtsov, O.A. Teoretychne ta eksperymentalne vyznachennia enerhii aktyvatsii utvorennia intermetalidiv u systemakh «nikel-aliuminii» ta «tytan-aliuminii». Metalurhiia - Metallurgy 2017, 37, 81–85.
[27] Crapse, J.; Pappireddi, N.; Gupta, M.; Shvartsman, S.Y.; Wieschaus, E.; Wühr, M. Evaluating the Arrhenius Equation for Developmental Processes. Mol. Syst. Biol. 2021, 178, e9895. https://doi.org/10.15252/msb.20209895