Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Фотокаталітична активність легованого бором масивного та кристалічного графітоподібного нітриду вуглецю в процесі одержання

Tetiana Stara1,2, Aleksandr Kutsenko1, Hanna Korzhak1, Mykhailo Ovcharov1, Oleksiy Melnіchenko3, Stepan Kuchmiy1
Affiliation: 
1 L.V. Pysarzhevsky Institute of Physical Chemistry, NAS of Ukraine, 31 Nauky Ave., Kyiv 03028, Ukraine 2 V.E. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 41 Nauky Ave., Kyiv 03028, Ukraine 3 State-Owned Enterprise “RADMA”, 31 pr. Nauky, Kyiv 03028, Ukraine stephan@ukr.net
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Піролізом сумішей меламіну з борною кислотою синтезовано леговані бором зразки масивного (В-g-C3N4), а їхньою подальшою термообробкою в евтектичному розплаві хлоридів калію та літію – кристалічного графітоподібного нітриду вуглецю (В-CGCN). Одержані матеріали проявляють значно вищу активність у процесі виділення водню з водно-етанольних розчинів під дією видимого світла, ніж нелеговані g-C3N4 та CGCN. За оптимальних умов ефективний квантовий вихід утворення водню складає Ф = 96 % при λопр = 405 нм.
References: 

[1] Nishioka, S.; Osterloh, F. E.; Wang, X.; Mallouk, T. E.; Maeda, K. Photocatalytic Water Splitting. Nat. Rev. Methods Primers. 2023, 3, 42. https://doi.org/10.1038/s43586-023-00226-x
[2] Coronel, S.; Pauker, C. S.; Jentzsch, P. V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161–168. https://doi.org/10.23939/chcht14.02.161
[3] Eidsvåg, H.; Bentouba, S.; Vajeeston, P.; Yohi, S.; Velauthapillai D. TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review. Molecules 2021, 26, 1687. https://doi.org/10.3390/molecules2606168
[4] Dontsova, T.; Kutuzova, A.; Hosseini-Bandegharaei, A. Characterization and Properties of Titanium(IV) Oxide, Synthesized by Different Routes. Chem. Chem. Technol. 2021, 15, 465–474. https://doi.org/10.23939/chcht15.04.465
[5] Ali, S. H.; Mohammed, S. S.; Al-Dokheily, M. E.; Laith Algharagholy, J. Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation. Chem. Chem. Technol. 2022, 16, 639–651. https://doi.org/10.23939/chcht16.04.639
[6] Tang, C.; Cheng, M.; Lai, C.; Li, L.; Yang, X.; Du, L.; Zhang, G.; Wang, G.; Yang, L. Recent Progress in the Applications of Non-Metal Modified Graphitic Carbon Nitride in Photocatalysis. Coord. Chem. Rev. 2023, 474, 214846. https://doi.org/10.1016/j.ccr.2022.214846
[7] Lin, H.; Wu, J.; Zhou, F.; Zhao, X.; Lu, P.; Sun, G.; Song, Y.; Yi, Y.; Liu, X.; Dai, H. Graphitic Carbon Nitride-Based Photocatalysts in the Applications of Environmental Catalysis. J. Environ. Sci. 2023, 124, 570–590. https://doi.org/10.1016/j.jes.2021.11.017
[8] Zuo, M.; Li, X. Liang, Y.; Zhao, F.; Sun, H.; Liu, C.; Gong, X.; Qin, P.; Wang, H.; Wu, Z. et al. Modification of Sulfur Doped Carbon Nitride and its Application in Photocatalysis. Sep. Purif. Technol. 2023, 308, 122875. https://doi.org/10.1016/j.seppur.2022.122875
[9] Vuong, H.-T.; Nguyen, D.-V.; Phuong, L. P.; Minh, P. P. D.; Ho, B. N.; Nguyen, H. A. Nitrogen-Rich Graphitic Carbon Nitride (g-C3N5): Emerging Low-Bandgap Materials for Photocatalysis. Carbon Neutraliz. 2023, 2, 425–457. https://doi.org/10.1002/cnl2.65
[10] Mishra, S. R.; Gadore, V.; Ahmaruzzaman, Md. Sustainability-Driven Photocatalysis: Oxygen-Doped g-C3N4 for Organic Contaminant Degradation. RSC Sustain. 2024, 2, 91–100. https://doi.org/10.1039/D3SU00384A
[11] Yin, X.; Liu, J.; Jäkle, F. Electron-Deficient Conjugated Materials via p–π* Conjugation with Boron: Extending Monomers to Oligomers, Macrocycles, and Polymers. Chem. Eur. J. 2021, 27, 2973–2986. https://doi.org/10.1002/chem.202003481
[12] Lu, C.; Chen, R.; Wu, X.; Fan, M.; Liu, Y.; Le, Z.; Jiang, S.; Song, S. Boron Doped g-C3N4 with Enhanced Photocatalytic UO22+ Reduction Performance. Appl. Surf. Sci. 2016, 360, 1016–1022. https://doi.org/10.1016/j.apsusc.2015.11.112
[13] Chen, P.; Xing, P.; Chen, Z.; Lin, H.; Y. He, Y. Rapid and Energy-Efficient Preparation of Boron Doped g-C3N4 with Excellent Performance in Photocatalytic H2-Evolution. Int. J. Hydrogen Energy 2018, 43, 19984–19989. https://doi.org/10.1016/j.ijhydene.2018.09.078
[14] Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu, H.; Li, H.; Li, Y. et al. Unveiling the Origin of Boosted Photocatalytic Hydrogen Evolution in Simultaneously (S, P, O)-Codoped and Exfoliated Ultrathin g-C3N4 Nanosheets. Appl. Catal. B 2019, 248, 84–94. https://doi.org/10.1016/j.apcatb.2019.02.020
[15] Lei, L.; Wang, W.; Wang, C.; Zhang, M.; Zhong, Q.; Fan, H. In situ Growth of Boron Doped g-C3N4 on Carbon Fiber Сloth as a Recyсled Flexible Film-Photocatalyst. Ceram. Int. 2021, 47, 1258–1267. https://doi.org/10.1016/j.ceramint.2020.08.246
[16] Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Synergistic Effects of Boron and Sulfur co-Doping into Graphitic Carbon Nitride Framework for Enhanced Photocatalytic Activity in Visible Light Driven Hydrogen Generation. ACS Appl. Energy Mater. 2018, 1, 5936–5947. https://doi.org/10.1021/acsaem.8b00956
[17] Ding, Y.; Maitra, S.; Wang, C.; Zheng, R. Hydrophilic bi-Functional B-doped g-C3N4 Hierarchical Architecture for Excellent Photocatalytic H2O2 Production and Photoelectrochemical Water Splitting. J. Energy Chem. 2022, 70, 236–247. https://doi.org/10.1016/j.jechem.2022.02.031
[18] Acharya, L.; Nayak, S.; Pattnaik, S. P.; Acharya, R.; Parida, K. Resurrection of Boron Nitride in pn Type-II Boron Nitride/B-doped-g-C3N4 Nanocomposite During Solid-State Z-Scheme Charge Transfer Path for the Degradation of Tetracycline Hydrochloride. J. Colloid Interface Sci. 2020, 566, 211–223. https://doi.org/10.1016/j.jcis.2020.01.074
[19] Cheng, N.; Jiang, P.; Liu, Q.; Tian, J.; Asiri, A. M.; Sun, X. Graphitic Carbon Nitride Nanosheets: One-Step, High-Yield Synthesis and Application for Cu2+ Detection. Analyst 2014, 139, 5065–5068. https://doi.org/10.1039/c4an00914b
[20] Shvalagin, V. V.; Korzhak, G. V.; Kuchmiy, S. Ya.; Skoryk M. A. Synergistic Action of Acidity and Pd, Au, and Pt Ions on the Photocatalytic Properties of Metal-Containing Nanocomposites Based on g-C3N4 in the Reaction of Hydrogen Production from Ethanol. Theor. Experim. Chem. 2021, 57, 199–204. https://doi.org/10.1007/s11237-021-09688-0
[21] Fan, X.; Xing, Z.; Shu, Z.; Zhang, L.; Wang, L.; Shi, J. Improved Photocatalytic Activity of g-C3N4 Derived from Cyanamide-Urea Solution. RSC Adv. 2015, 5, 8323–8328. https://doi.org/10.1039/C4RA16362A
[22] Savateev, A.; Pronkin, S.; Epping, J. D.; Willinger, M. G.; Wolff, C.; Neher, D.; Antonietti, M.; Dontsova, D. Potassium Poly (Heptazine Imides) from Aminotetrazoles: Shifting band Gaps of Carbon Nitride-Like Materials by 0.7 eV for More Efficient Solar Hydrogen and Oxygen Evolution. ChemCatChem. 2017, 9, 167–174. https://doi.org/10.1002/cctc.201601165
[23] Lin, L.; Ou H.; Zhang Y.; Wang X. Tri-s-Triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catal. 2016, 6, 3921–3931. https://doi.org/10.1021/acscatal.6b00922
[24] Lin, L.; Ren, W.; Wang, C.; Asiri, A. M.; Zhang, J.; Wang, X. Crystalline Carbon Nitride Semiconductors Prepared at Different Temperatures for Photocatalytic Hydrogen Production. Appl. Catal. B 2018, 231, 234–241. https://doi.org/10.1016/j.apcatb.2018.03.009
[25] Zhang, G.; Lin, L.; Li, G.; Zhang, Y.; Savateev, A.; Zafeiratos, S.; Wang, X.; Antonietti, M. Ionothermal Synthesis of Triazine–Heptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from “Sea Water”. Angew. Chem. 2018, 57, 9372–9376. https://doi.org/10.1002/anie.201804702
[26] Zhang, G.; Li, G.; Heil, T.; Zafeiratos, S.; Lai, F.; Savateev, A.; Antonietti, M.; Wang, X. Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitridefor Enhanced Solar Hydrogen Production and CO2 Reduction. Angew. Chem. 2019, 131, 3471–3475. https://doi.org/10.1002/ange.201811938
[27] Bi, J.; Zhu, L.; Wu, J.; Xu, Y.; Wang, Z.; Zhang, X.; Han Y. Optimizing Electronic Structure and Charge Transport of Sulfur/Potassium Co-Doped Graphitic Carbon Nitride with Efficient Photocatalytic Hydrogen Evolution Performance. Appl. Organomet. Chem. 2019, 33, e5163. https://doi.org/10.1002/aoc.5163
[28] Zou, H.; Yan, X.; Ren, J.; Wu, X. Photocatalytic Activity Enhancement of Modified g-C3N4 by Ionothermal Copolymerization. J. Materiomics 2015, 1, 340–347. https://doi.org/10.1016/j.jmat.2015.10.004
[29] Zhang, G.; Li, G.; Lan, Z.-A.; Lin, L.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X.; Antonietti, M. Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. Angew. Chem. 2017, 129, 13630–13634. https://doi.org/10.1002/ange.201706870
[30] Romanos, J.; Beckner, M.; Stalla, D.; Tekeei, A.; Suppes, G.; Jalisatgi, S.; Lee, M.; Hawthorne, F.; Robertson, J. D.; Firlej, L. et al. Infrared Study of Boron–Carbon Chemical Bonds in Boron-Doped Activated Carbon. Carbon 2013, 54, 208–214. https://doi.org/10.1016/j.carbon.2012.11.031
[31] Stara, T. R.; Kuchmiy S. Ya. Luminescent and Photocatalytic Properties of Bulk and Crystalline Graphitic Carbon Nitride. Theor. Exper. Chem. 2022, 58, 240–246. https://doi.org/10.1007/s11237-022-09740-7
[32] Choudhury, B.; Paul, K. K.; Sanyal, D.; Hazarika, A.; Giri, P. K. Evolution of Nitrogen-Related Defects in Graphitic Carbon Nitride Nanosheets Probed by Positron Annihilation and Photoluminescence Spectroscopy. J. Phys. Chem. C 2018, 122, 9209–9219. https://doi.org/10.1021/acs.jpcc.8b01388
[33] Jiang, Y.; Sun, Z.; Tang, C.; Zhou, Y.; Zeng, L.; Huang, L. Enhancement of Photocatalytic Hydrogen Evolution Activity of Porous Oxygen Doped g-C3N4 with Nitrogen Defects Induced by Changing Electron Transition. Appl. Catal. B 2019, 240, 30–38. https://doi.org/10.1016/j.apcatb.2018.08.059
[34] Yuan, Y.; Zhang, L.; Xing, J.; Utama, M. I. B.; Lu, X.; Du, K.; Li, Y.; Hu, X.; Wang, S.; Genç, A. et al. High-Yield Synthesis and Optical Properties of g-C3N4. Nanoscale 2015, 7, 12343–12350. https://doi.org/10.1039/C5NR02905H
[35] Zheng, X.; Cui, G.; Yang, S.; Zhang, S.; Yuan, X.; Li, J.; Zhang, P.; Ding, G.; Wang, H. Highly Solid-Luminescent Graphitic C3N4 Nanotubes for White Light-Emitting Diodes. J. Phys. D 2019, 52, 505503. https://doi.org/10.1088/1361-6463/ab420b
[36] Cheng, C.; Mao, L.; Kang X.; Dong, C.-L.; Huang, Y.-C.; Shen, S.; Shi, J.; Guo, L. A High-Cyano Groups-Content Amorphous-Crystalline Carbon Nitride Isotype Heterojunction Photocatalyst for High-Quantum-Yield H2 Production and Enhanced CO2 Reduction. Appl. Catal. B 2023, 331, 122733. https://doi.org/10.1016/j.apcatb.2023.122733
[37] Mishra, B.P.; Babu, P.; Parida, K. Phosphorous, Boron and Sulfur Doped g-C3N4 Nanosheet: Synthesis, Characterization, and Comparative Study Towards Photocatalytic Hydrogen Generation. Mater. Today: Proc. 2021, 35, 258–262. https://doi.org/10.1016/j.matpr.2020.05.567
[38] Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation. Langmuir 2010, 26, 3894–3901. https://doi.org/10.1021/la904023j