Ефект взаємодії робочих параметрів при окисненні реагентом фентона різних барвників. застосування методу плакетта–бермана
Attachment | Size |
---|---|
full_text.pdf | 400.22 KB |
1] Fenton, H.J.H., Jackson, H.J. I. – The Oxidation of Polyhydric Alcohols in Presence of Iron. J. Chem. Soc. Trans. 1899, 75, 1-11. https://doi.org/10.1039/CT8997500001
[2] Fenton, H.J.H., Jones, H.O. VII. – The Oxidation of Organic Acids in Presence of Ferrous Iron. Part I. J. Chem. Soc. Trans. 1900, 77, 69-76. https://doi.org/10.1039/CT9007700069
[3] Li, W.; Xu, L. Research Methods for the Degradation Mechan-ism of Organic Pollutants in Wastewater. Acta Chim. Sinica 2019, 77, 705-716. https://doi.org/10.6023/A19030073
[4] Su, S.; Liu, Y.; Liu X.; Jin, W.; Zhao, Y. Transformation
Pathway and Degradation Mechanism of Methylene Blue Through Β-Feooh@GO Catalyzed Photo-Fenton-Like System. Chemosphere 2019, 218, 83-92. https://doi.org/10.1016/j.chemosphere.2018.11.098
[5] Jegan Durai, N.; Gopalakrishna, G.V. T.; Padmanaban, V.C.; Selvaraju N. Oxidative Removal of Stabilized Landfill Leachate by Fenton's Process: Process Modeling, Optimization & Analysis of Degraded Products. RCS Adv. 2020, 10, 3916-3925. https://doi.org/10.1039/C9RA09415F
[6] Elhalil, A.; Tounsadi, H.; Elmoubarki R.; Mahjoubi, F.Z.; Far-nane M.; Sadiq, M.; Abdennouri, M.; Qourzal, S.;Barka, N. Factorial Experimental Design for The Optimization of Catalytic Degradation of Malachite Green Dye in Aqueous Solution by Fenton Process. Water Resour. Ind. 2016, 15, 41-48. https://doi.org/10.1016/j.wri.2016.07.002
[7] Jian-Hui Sun, J.-H.; Sun S.-P.; Wang G.-L.; Qiao L.-P.
Degradation of Azo Dye Amido Black 10B in Aqueous Solution by Fenton Oxidation Process. Dyes Pigm. 2007, 74, 647-652. https://doi.org/10.1016/j.dyepig.2006.04.006
[8] Sillanpää, M., Ncibi, M.C., Matilainen, A. Advanced Oxidation Processes for The Removal of Natural Organic Matter from Drink-ing Water Sources: A Comprehensive Review. J. Environ. Manage. 2018, 208, 56-76. https://doi.org/10.1016/j.jenvman.2017.12.009
[9] Khue, D.N.; Lam, T.D.; Van Chat, N.; Bach, V.Q.; Minch, D.B.; Loi, V.D.; Van Anh, N. Simultaneous Degradation of 2,4,6-Trinitrophenyl-N-Methylnitramine (Tetryl) and Hexahydro-1,3,5-Trinitro-1,3,5 Triazine (RDX) in Polluted Wastewater Using Some Advanced Oxidation Processes. J. Ind. Eng. Chem. 2014, 20, 1468-1475. https://doi.org/10.1016/j.jiec.2013.07.033
[10] Oh, S.Y.; Yoon, H.S.; Jeong, T.Y.; Kim, S.D. Evaluation of Remediation Processes for Explosive-Contaminated Soils: Kinetics and Microtox® Bioassay. J. Chem. Technol. Biotechnol. 2016, 91, 928-937. https://doi.org/10.1002/jctb.4658
[11] Ghernaout, D.; Elboughdiri, N.; Ghareba, S. Fenton Technolo-gy for Wastewater Treatment: Dares and Trends. OALib. J. 2020, 7, e6045. https://doi.org/10.4236/oalib.1106045
[12] Karthikeyan, S.; Titus, A.; Gnanamani, A.; Mandal, A.B.; Sekaran, G. Treatment of Textile Wastewater by Homogeneous and Heterogeneous Fenton Oxidation Processes. Desalination 2011, 281, 438-445. https://doi.org/10.1016/j.desal.2011.08.019
[13] Hermosilla, D.; Merayo, N.; Gascó, A.; Blanco, Á.
The Application of Advanced Oxidation Technologies to The Treatment of Effluents from The Pulp and Paper Industry:
A Review. Environ. Sci. Pollut. Res. 2015, 22, 168-191. https://doi.org/10.1007/s11356-014-3516-1
[14] Ma, C.; Feng, S.; Zhou, J.; Chen, R.; Wei, Y.; Liu, X.; Wang, S. Enhancement of H2O2 Decomposition Efficiency by The
Co-Catalytic Effect of Iron Phosphide on The Fenton Reaction for The Degradation of Methylene Blue. Appl. Catal. B 2019, 259, 118015. https://doi.org/10.1016/j.apcatb.2019.118015
[15] Munoz, M.; De Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J.
Preparation of Magnetite-Based Catalysts and Their Application in Heterogeneous Fenton Oxidation – A Review. Appl. Catal. B 2015, 176–177, 249-265. https://doi.org/10.1016/j.apcatb.2015.04.003
[16] Pan, X.; Cheng, S.; Su, T.; Zuo, G.; Zhao, W.; Qi, X.; Wei, W.; Dong, W. Fenton-Like Catalyst Fe3O4@Polydopamine-MnO2 for Enhancing Removal of Methylene Blue in Wastewater. Colloids Surf. B 2019, 181, 226-233. https://doi.org/10.1016/j.colsurfb.2019.05.048
[17] Esmaeili, N.; Mohammadi, P.; Abbaszadeh, M.; Sheibani, H. Au Nanoparticles Decorated on Magnetic Nanocomposite
(GO-Fe3O4/Dop/Au) as A Recoverable Catalyst for Degradation of Methylene Blue and Methyl Orange in Water. Int. J. Hydrog.
Energy 2019, 44, 23002-23009. https://doi.org/10.1016/j.ijhydene.2019.07.025
[18] Antony, J. 3 - Understanding Key Interactions in Processes. Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevi-er, 2014, pp 19-32. https://doi.org/10.1016/B978-0-08-099417-8.00003-1
[19] Iida, Y.; Yasui, K.; Tuziuti, T.; Sivakumar M. Sonochemistry and Its Dosimetry. Microchem. J. 2005, 80, 159-164. https://doi.org/10.1016/j.microc.2004.07.016
[20] Ge, J.; Qu, J.: Degradation of Azo Dye Acid Red B on
Manganese Dioxide in The Absence and Presence of Ultrasonic Irradiation. J. Hazard Mater. 2003, 100, 197-207. https://doi.org/10.1016/S0304-3894(03)00105-5
[21] Joglekar, A.M.; May, A.T. Product Excellence Through Design of Experiments. Cereal Foods World 1987, 32, 857-868.
[22] Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (Oh/O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513. https://doi.org/10.1063/1.555805
[23] Kavitha, V.; Palanivelu, K. Destruction of Cresols by Fenton Oxidation Process. Water Res. 2005, 39, 3062-3072. https://doi.org/10.1016/j.watres.2005.05.011
[24] Luo, W.; Abbas, M.E.; Zhu, L.; Deng, K.; Tang, H. Rapid Quantitative Determination of Hydrogen Peroxide by Oxidation Decolorization of Methyl Orange Using a Fenton Reaction System. Anal. Chim. Acta 2008, 629(1-2), 1-5. https://doi.org/10.1016/j.aca.2008.09.009
[25] Youssef, N.A.; Shaban, S.A.; Ibrahim, F.A.; Mahmoud, A.S. Degradation of Methyl Orange Using Fenton Catalytic Reaction. Egypt. J. Pet. 2016, 25, 317-321. https://doi.org/10.1016/j.ejpe.2015.07.017
[26] Hashemian, S.; Tabatabaee, M.; Gafari, M. Fenton Oxidation of Methyl Violet in Aqueous Solution. J. Chem. 2013, 2013, Article ID 509097. https://doi.org/10.1155/2013/509097
[27] Hashemian, S. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study. J. Chem. 2013, 2013, Article ID 809318. https://doi.org/10.1155/2013/809318
[28] de Souza, D.R.; Mendonça Duarte, E.T.F.; de Souza Girardi, G.; Velani, V.; da Hora Machado, A.E.; Sattler, C.; de Oliveira, L.; de Miranda, J.A. Study of Kinetic Parameters Related to The
Degradation of an Industrial Effluent Using Fenton-Like Reactions. J. Photochem. Photobiol. A 2006, 179, 269. https://doi.org/10.1016/j.jphotochem.2005.08.025
[29] Xu, H.Y.; Prasad, M.; Liu, Y. Schorl: A Novel Catalyst in Mineral-Catalyzed Fenton-Like System for Dyeing Wastewater Discoloration. J. Hazard. Mater. 2009, 165, 1186-1192. https://doi.org/10.1016/j.jhazmat.2008.10.108
[30] Sirtori, C.; Zapata, A.; Oller, I.; Gerniak, W.; Agüera, A.; Malato, S. Solar Photo-Fenton as Finishing Step for Biological Treatment of a Pharmaceutical Wastewater. Environ. Sci. Technol. 2009, 43, 1185-1191. https://doi.org/10.1021/es802550y
[31] Bacardit, J.; Stötzner, J.; Chamarro E.; Esplugas, S. Effect of Salinity on the Photo-Fenton Process. Ind. Eng. Chem.Res. 2007, 46, 7615-7619. https://doi.org/10.1021/ie070154o
[32] Dong, Y.; Chen, J.; Li, C.; Zhu, H. Decoloration of Three Azo Dyes in Water by Photocatalysis of Fe(III)–Oxalate Complex-es/H2O2 in the Presence of Inorganic Salts. Dyes Pigm. 2007, 73, 261-268. https://doi.org/10.1016/j.dyepig.2005.12.007
[33] El-Fass, M.M.; Badawy, N.A.; El-Bayaa, A.A.; Moursy, N.S. The Influence of Simple Electrolyte on the Behaviour of Some Acid Dyes in Aqueous Media. Bull. Korean Chem. Soc. 1995, 16(5), 458-461.