Дослідження властивостей гідрогелевих пластин на основі високоестерифікованого пектину
Attachment | Size |
---|---|
full_text.pdf | 442.52 KB |
[1] Shevchuk, O.; Bukartyk, N.; Chobit, M.; Tokarev, V. Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. J. Polym. Res. 2021, 28 (9), 331. https://doi.org/10.1007/s10965-021-02662-3
[2] Nosova, N.G.; Samaryk, V.J.; Varvarenko, S.M.; Ferens, M.V.; Voronovska, A.V.; Nagornyak, M.I.; Khomyak, S.V.; Nadashkevych, Z.J.; Voronov, S.A. Porous polyacrylamide hydrogels: Preparation and properties. Vopr. Khimii i Khimicheskoi Tekhnologii 2016, 5,6, 78-86.
[3] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Voronov, S. Optical properties of hydrogels filled with dispersed nanoparticles. Chem. Chem. Technol. 2017, 11(4), 449-453. https://doi.org/10.23939/chcht11.04.449
[4] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.N.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M.E. A phenol-formaldehyde polymeric network to generate organic aerogels: Synthesis, physicochemical characteristics and potential applications. J. Mater. Chem. A 2018, 6(3), 845-852. https://doi.org/10.1039/C7TA08814K
[5] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
[6] Oltarzhevskaya, N.D.; Korovina, M.A.; Krichevskij, G.E.; Shchedrina, M.A.; Egorova, E.A. Vozmozhnosti primeneniya polisaharidov pri lechenii ran. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2019, 6(2), 24-31. https://doi:10.25199/2408-9613-2019-6-2-24-31
[7] Popadyuk, A.; Tarnavchyk, I.; Popadyuk, N.; Kohut, A.; Samaryk, V.; Voronov, S; Voronov, A. A novel copolymer of N-[(tert-butylperoxy)methyl]acrylamide and maleic anhydride for use as a reactive surfactant in emulsion polymerization. React. Funct. Polym. 2013, 73(9), 1290-1298. https://doi:10.1016/j.reactfunctpolym.2013.07.002
[8] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І; Stasiuk, A.; Samaryk, V.; Voronov, S. Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45-54. http://dx.doi.org/10.32434/0321-4095-2021-134-1-45-54
[9] Christiaens, S.; Van Buggenhout, S.; Houben, K.; Jamsazzadeh Kermani, Z.; Moelants, K.R.N.; Ngouémazong, E.D.; Van Loey, A.; Hendrickx, M.E.G. Process–Structure–Function Relations of Pectin in Food. Crit. Rev. Food Sci. Nutr. 2016, 56(6), 1021-1042. https://doi.org/10.1080/10408398.2012.753029
[10] Espitia, P.J.P.; Du, W.-X.; Avena-Bustillos, R.D.J.; Soares, N.D.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties – A Review. Food Hydrocoll. 2014, 35, 287-296. https://doi.org/10.1016/j.foodhyd.2013.06.005
[11] Noreen, A.; Nazli, Z.-i-H.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol. 2017, 101, 254-272. http://dx.doi.org/10.1016/j.ijbiomac.2017.03.029
[12] Liu, L.; Fishman, M.L.; Kost, J.; Hicks, K.B. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 2003, 24(19), 3333-3343. https://doi.org/10.1016/S0142-9612(03)00213-8
[13] Moreira, H.R.; Munarin, F.; Gentilini, R.; Visai, L.; Granja, P.L.; Tanzi, M.C.; Petrini, P. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydr. Polym. 2014, 103, 339-347. http://dx.doi.org/10.1016/j.carbpol.2013.12.057
[14] Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers 2018, 10, 1407. https://doi.org/10.3390/polym10121407
[15] Soroka, O.B.; Kosenko, S.V. Sposіb lіkuvannya ran u rotovіj porozhninі. Patent Ukrainy 16836, August 15, 2006.
[16] Rezvanian, M.; Ahmad, N.; Amin, M.C.I.M.; Ng, S.-F. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 2017, 97, 131-140. https://doi.org/10.1016/j.ijbiomac.2016.12.079
[17] Neves, S.C.; Gomes, D.B.; Sousa, A.; Bidarra, S.J.; Petrini, P.; Moroni, L.; Barrias, C.C.; Granja, P.L. Biofunctionalized pectin hydrogels as 3D cellular microenvironments. J. Mater. Chem. B 2015, 3(10), 2096-2108. https://doi.org/10.1039/C4TB00885E
[18] Tummalapalli, M.; Berthet, M.; Verrier, B.; Deopura, B.L.; Alam, M.S; Gupta, B. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agent. Int. J. Biol. Macromol. 2016, 82, 104-113. http://dx.doi.org/10.1016/j.ijbiomac.2015.10.087
[19] Zhu, Y.; Yao, Z.; Liu, Y.; Zhang, W.; Geng, L.; Ni, T. Incorporation of ROS-Responsive Substance P-Loaded Zeolite Imidazolate Framework-8 Nanoparticles into a Ca2+-Cross-Linked Alginate/Pectin Hydrogel for Wound Dressing Applications. Int. J. Nanomedicine 2020, 15, 333-346. http://doi.org/10.2147/IJN.S225197
[20] Powers, J.G.; Morton, L.M.; Phillips, T.J. Dressings for chronic wounds. Dermatol. Ther. 2013, 26, 197-206. https://doi.org/10.1111/dth.12055
[21] Tavakoli, А.; Klar, A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10 (8), 1169. https://doi.org/10.3390/biom10081169
[22] Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12(20), 3323. https://doi.org/10.3390/ma12203323
[23] Rezvanian, M.; Amin, M.C.I.M.; Ng, S.F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym. 2016, 137, 295-304. https://doi.org/10.1016/j.carbpol.2015.10.091
[24] Fang, Y.; Al-Assaf, S.; Phillips, G.O.; Nishinari, K.; Funami, T.; Williams, P.A. Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydr. Polym. 2008, 72(2), 334-341. https://doi.org/10.1016/j.carbpol.2007.08.021
[25] Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10(7), 762. https://doi.org/10.3390/polym10070762
[26] Siggia, S.; Hanna, J.G. Quantitative Organic Analysis via Functional Groups, 4th ed.; John Wiley & Sons Inc., 1979.
[27] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate derivative of ED-24 epoxy resin and its application. Chem. Chem. Technol. 2013, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
[28] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and application of ED-20 epoxy resin hydroxy-containing derivatives in bitumen-polymeric blends. Chem. Chem. Technol. 2015, 9(1), 69-76. https://doi.org/10.23939/chcht09.01.069
[29] Bratychak, M.; Iatsyshyn, O.; Shyshchak, O.; Atsakhova, O.; Janik, H. Carboxy derivative of dioxydiphenylpropane diglycidyl ether monomethacrylate as an additive for composites. Chem. Chem. Technol. 2017, 11(1), 49-54. https://doi.org/10.23939/chcht11.01.049
[30] Mysak, Y.; Kovalenko, T.; Serdiuk, V.; Kravets, T.; Martynyak-Andrushko, M. Obtaining of polymethacrylate additives and studying of operational properties of an alloyed industrial oil. EasternEuropean J. Enterp. Technol. 2016, 3(6), 9-15. https://doi.org/10.15587/1729-4061.2016.71235
[31] Rojas-Molina, I.; Gutiérrez-Cortez, E.; Bah, M.; Rojas-Molina, A.; Ibarra-Alvarado, C.; Rivera-Muñoz, E.; del Real, A.; Aguilera-Barreiro, M.D.L.A. Characterization of Calcium Compounds in Opuntia ficus indica as a Source of Calcium for Human Diet. J. Chem. 2015, Article ID 710328. https://doi.org/10.1155/2015/710328
[32] Bratychak, M.; Bratychak, M.; Brostow, W.; Shyshchak, O. Synthesis and properties of peroxy derivatives of epoxy resins based on Bisphenol A: Effects of the presence of boron trifluoride ethereate. Mater. Res. Innov. 2002, 6(1), 24-30. https://doi.org/10.1007/s10019-002-0157-7
[33] Zhang, K.; Feng, W.; Jin, C. Protocol efficiently measuring the swelling rate of hydrogels. MethodsX 2020, 7, 100779. https://doi.org/10.1016/j.mex.2019.100779
[34] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7(3), 279-287. https://doi.org/10.23939/chcht07.03.279
[35] Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018, 23(4), 942. https://doi.org/10.3390/molecules23040942
[36] Huglin, M.B.; Yip, D.C.F. Microsyneresis region in poly(2-hydroxyethyl methacrylate) hydrogels. Macromolecules 1992, 25(4), 1333-1337. https://doi.org/10.1021/ma00030a020