Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Дослідження та порівняння антиоксидантного потенціалу катехінів, які містяться в зеленому чаї: DFT дослідження

Sanduni S. Wijesooriya1, Dinesh R. Pandithavidana1
Affiliation: 
1 University of Kelaniya, Kelaniya 11600, Sri Lanka dinesh@kln.ac.lk
DOI: 
https://doi.org/10.23939/chcht16.04.591
AttachmentSize
PDF icon full_text.pdf1 MB
Abstract: 
Для порівняння антиоксидантного потенціалу чотирьох основних катехінів, які містяться в зеленому чаї, застосовано DFT розрахунки. Детально досліджено термодинамічні параметри, пов’язані з трьома ключовими механізмами первинної антиоксидантної дії. Також досліджено молекулярні орбітальні енергії, абсолютну твердість, електронегативність та індекс електрофільності, які сприяють поглинанню радикалів. Потенціал поглинання радикалів кожної гідроксильної групи цих поліфенольних антиоксидантів досліджено незалежно.
References: 

[1] Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
[2] Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and their Reaction Mechanisms. RSC Adv. 2015, 5, 27986-28006. https://doi.org/10.1039/C4RA13315C
[3] Shahidi, F.; Zhong, Y. Novel Antioxidants in Food Quality Preservation and Health Promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930-940. https://doi.org/10.1002/ejlt.201000044
[4] Dizdaroglu, M. Oxidative Damage to DNA in Mammalian Chromatin. Mutat. Res. DNAging. 1992, 275, 331-342. https://doi.org/10.1016/0921-8734(92)90036-O
[5] Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480-492. https://doi.org/10.1016/j.foodchem.2017.08.117
[6] Lambert, J.D.; Yang, C.S. Mechanisms of Cancer Prevention by Tea Constituents. J. Nutr. 2003, 133, 3262S-3267S. https://doi.org/10.1093/jn/133.10.3262S
[7] Chung, J.E.; Kurisawa, M.; Kim, Y.-J.; Uyama, H.; Kobayashi, S. Amplification of Antioxidant Activity of Catechin by Polycondensation with Acetaldehyde. Biomacromolecules 2004, 5, 113-118. https://doi.org/10.1021/bm0342436
[8] Sabetkar, M.; Low, S.Y.; Bradley, N.J.; Jacobs, M.; Naseem, K.M.; Richard Bruckdorfer, K. The Nitration of Platelet Vasodilator Stimulated Phosphoprotein Following Exposure to Low Concentrations of Hydrogen Peroxide. Platelets 2008, 19, 282-292. https://doi.org/10.1080/09537100801915142
[9] Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chinese Med. 2010, 5, 13. https://doi.org/10.1186/1749-8546-5-13
[10] Yokozawa, T.; Nakagawa, T.; Lee, K. I.; Cho, E.J. Effects of Green Tea Tannin on Cisplatin-induced Nephropathy in LLC-PK1 Cells and Rats. J. Pharm. Pharmacol. 1999, 51, 1325-1331. https://doi.org/10.1211/0022357991776912
[11] Škorňa, P.; Rimarčík, J.; Poliak, P.; Lukeš, V.; Klein, E. Thermodynamic Study of Vitamin B6 Antioxidant Potential. Comput. Theor. Chem. 2016, 1077, 32-38. https://doi.org/10.1016/j.comptc.2015.10.010
[12] Pandithavidana, D.R.; Jayawardana, S.B. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights. Molecules 2019, 24, 1646-1654. https://doi.org/10.3390/molecules24091646
[13] Borgohain, R.; Guha, A.K.; Pratihar, S.; Handique, J.G. Antioxidant Activity of Some Phenolic Aldehydes and Their Diamine Derivatives: A DFT Study. Comput. Theor. Chem. 2015, 1060, 17-23. https://doi.org/10.1016/j.comptc.2015.02.014
[14] Mazzone, G.; Russo, N.; Toscano, M. Antioxidant Properties Comparative Study of Natural Hydroxycinnamic Acids and Structurally Modified Derivatives: Computational Insights. Comput. Theor. Chem. 2016, 1077, 39-47. https://doi.org/10.1016/j.comptc.2015.10.011
[15] Klein, E.; Lukeš, V.; Ilčin, M. DFT/B3LYP Study of Tocopherols and Chromans Antioxidant Action Energetics. Chem. Phys. 2007, 336, 51-57. https://doi.org/10.1016/j.chemphys.2007.05.007
[16] Klein, E.; Lukeš, V. DFT/B3LYP Study of the Substituent Effect on the Reaction Enthalpies of the Individual Steps of Single Electron Transfer−Proton Transfer and Sequential Proton Loss Electron Transfer Mechanisms of Phenols Antioxidant Action. J. Phys. Chem. A 2006, 110, 12312-12320. https://doi.org/10.1021/jp063468i
[17] Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (Vitamin B3) as an Effective Antioxidant Against Oxidative Damage in Rat Brain Mitochondria. Redox Rep. 1999, 4, 179-184. https://doi.org/10.1179/135100099101534882
[18] Orenha, R.P.; Galembeck, S.E. Molecular Orbitals of NO, NO+, and NO–: A Computational Quantum Chemistry Experiment. J. Chem. Educ. 2014, 91, 1064-1069. https://doi.org/10.1021/ed400618j
[19] Rajan, V.K.; Muraleedharan, K. A Computational Investigation on the Structure, Global Parameters and Antioxidant Capacity of a Polyphenol, Gallic Acid. Food Chem. 2017, 220, 93-99. https://doi.org/10.1016/j.foodchem.2016.09.178
[20] Mendoza-Wilson, A.M.; Glossman-Mitnik, D. Theoretical Study of the Molecular Properties and Chemical Reactivity of (+) Catechin and (-)-Epicatechin Related to Their Antioxidant Ability. J. Mol. Struct.: THEOCHEM 2006, 761, 97-106. https://doi.org/10.1016/j.theochem.2006.01.001
[21] Wang, J.; Tang H.; Hou, B.; Zhang, P.; Wang, Q.; Zhang, B.-L.; Huang, Y.-W.; Wang, Y.; Xiang, Z.-M.; Zi, C.-T. et al. Synthesis, Antioxidant Activity, and Density Functional Theory Study of Catechin Derivatives. RSC Adv. 2017, 7, 54136-54141. https://doi.org/10.1039/C7RA11496F
[22] Mennucci, B.; Cammi, R. Continuum Solvation Models in Chemical Physics: From Theory to Applications; John Wiley & Sons, Ltd: Chichester, UK, 2007.
[23] Mazzone, G.; Malaj, N.; Russo, N.; Toscano, M. Density Functional Study of the Antioxidant Activity of Some Recently Synthesized Resveratrol Analogues. Food Chem. 2013, 141, 2017-2024. https://doi.org/10.1016/j.foodchem.2013.05.071
[24] Mazzone, G.; Malaj, N.; Galano, A.; Russo, N.; Toscano M. Antioxidant Properties of Several Coumarin–Chalcone Hybrids from Theoretical Insights. RSC Adv. 2015, 5, 565-575. https://doi.org/10.1039/C4RA11733F
[25] Anitha, S.; Krishnan, S.; Senthilkumar, K.; Sasirekha, V. Theoretical Investigation on the Structure and Antioxidant Activity of (+) Catechin and (−) Epicatechin – a Comparative Study. Mol. Phys. 2020, 118, 1745917. https://doi.org/10.1080/00268976.2020.1745917
[26] Wang, A.; Lu, Y.; Du, X.; Shi, P.; Zhang, H. A Theoretical Study on the Antioxidant Activity of Uralenol and Neouralenol Scavenging Two Radicals. Struct. Chem. 2018, 29, 1067-1075. https://doi.org/10.1007/s11224-018-1090-8
[27] Parr, R.G.; von Szentpály, L.; Liu, S.: Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
[28] Ardjani, A.T.E.; Mekelleche, S.M. Analysis of the Antioxidant Activity of 4-(5-Chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic Acid Derivatives Using Quantum-Chemistry Descriptors and Molecular Docking. J. Mol. Model. 2016, 22, 302. https://doi.org/10.1007/s00894-016-3160-4
[29] Vorobyova, V.; Shakun, A.; Chygyrynets, O.; Skiba, M.; Zaporozhets, J. Antioxidant Activity and Phytochemical Screening of the Apricot Cake Extract: Experimental and Theoretical Studies. Chem. Chem. Technol. 2020, 14, 372-379. https://doi.org/10.23939/chcht14.03.372
[30] Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (Vitamin B3) as an Effective Antioxidant against Oxidative Damage in Rat Brain Mitochondria. Redox Rep. 1999, 4, 179-184. https://doi.org/10.1179/135100099101534882