Дослідження та порівняння антиоксидантного потенціалу катехінів, які містяться в зеленому чаї: DFT дослідження
Attachment | Size |
---|---|
full_text.pdf | 1 MB |
Keywords:
[1] Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
[2] Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and their Reaction Mechanisms. RSC Adv. 2015, 5, 27986-28006. https://doi.org/10.1039/C4RA13315C
[3] Shahidi, F.; Zhong, Y. Novel Antioxidants in Food Quality Preservation and Health Promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930-940. https://doi.org/10.1002/ejlt.201000044
[4] Dizdaroglu, M. Oxidative Damage to DNA in Mammalian Chromatin. Mutat. Res. DNAging. 1992, 275, 331-342. https://doi.org/10.1016/0921-8734(92)90036-O
[5] Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480-492. https://doi.org/10.1016/j.foodchem.2017.08.117
[6] Lambert, J.D.; Yang, C.S. Mechanisms of Cancer Prevention by Tea Constituents. J. Nutr. 2003, 133, 3262S-3267S. https://doi.org/10.1093/jn/133.10.3262S
[7] Chung, J.E.; Kurisawa, M.; Kim, Y.-J.; Uyama, H.; Kobayashi, S. Amplification of Antioxidant Activity of Catechin by Polycondensation with Acetaldehyde. Biomacromolecules 2004, 5, 113-118. https://doi.org/10.1021/bm0342436
[8] Sabetkar, M.; Low, S.Y.; Bradley, N.J.; Jacobs, M.; Naseem, K.M.; Richard Bruckdorfer, K. The Nitration of Platelet Vasodilator Stimulated Phosphoprotein Following Exposure to Low Concentrations of Hydrogen Peroxide. Platelets 2008, 19, 282-292. https://doi.org/10.1080/09537100801915142
[9] Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chinese Med. 2010, 5, 13. https://doi.org/10.1186/1749-8546-5-13
[10] Yokozawa, T.; Nakagawa, T.; Lee, K. I.; Cho, E.J. Effects of Green Tea Tannin on Cisplatin-induced Nephropathy in LLC-PK1 Cells and Rats. J. Pharm. Pharmacol. 1999, 51, 1325-1331. https://doi.org/10.1211/0022357991776912
[11] Škorňa, P.; Rimarčík, J.; Poliak, P.; Lukeš, V.; Klein, E. Thermodynamic Study of Vitamin B6 Antioxidant Potential. Comput. Theor. Chem. 2016, 1077, 32-38. https://doi.org/10.1016/j.comptc.2015.10.010
[12] Pandithavidana, D.R.; Jayawardana, S.B. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights. Molecules 2019, 24, 1646-1654. https://doi.org/10.3390/molecules24091646
[13] Borgohain, R.; Guha, A.K.; Pratihar, S.; Handique, J.G. Antioxidant Activity of Some Phenolic Aldehydes and Their Diamine Derivatives: A DFT Study. Comput. Theor. Chem. 2015, 1060, 17-23. https://doi.org/10.1016/j.comptc.2015.02.014
[14] Mazzone, G.; Russo, N.; Toscano, M. Antioxidant Properties Comparative Study of Natural Hydroxycinnamic Acids and Structurally Modified Derivatives: Computational Insights. Comput. Theor. Chem. 2016, 1077, 39-47. https://doi.org/10.1016/j.comptc.2015.10.011
[15] Klein, E.; Lukeš, V.; Ilčin, M. DFT/B3LYP Study of Tocopherols and Chromans Antioxidant Action Energetics. Chem. Phys. 2007, 336, 51-57. https://doi.org/10.1016/j.chemphys.2007.05.007
[16] Klein, E.; Lukeš, V. DFT/B3LYP Study of the Substituent Effect on the Reaction Enthalpies of the Individual Steps of Single Electron Transfer−Proton Transfer and Sequential Proton Loss Electron Transfer Mechanisms of Phenols Antioxidant Action. J. Phys. Chem. A 2006, 110, 12312-12320. https://doi.org/10.1021/jp063468i
[17] Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (Vitamin B3) as an Effective Antioxidant Against Oxidative Damage in Rat Brain Mitochondria. Redox Rep. 1999, 4, 179-184. https://doi.org/10.1179/135100099101534882
[18] Orenha, R.P.; Galembeck, S.E. Molecular Orbitals of NO, NO+, and NO–: A Computational Quantum Chemistry Experiment. J. Chem. Educ. 2014, 91, 1064-1069. https://doi.org/10.1021/ed400618j
[19] Rajan, V.K.; Muraleedharan, K. A Computational Investigation on the Structure, Global Parameters and Antioxidant Capacity of a Polyphenol, Gallic Acid. Food Chem. 2017, 220, 93-99. https://doi.org/10.1016/j.foodchem.2016.09.178
[20] Mendoza-Wilson, A.M.; Glossman-Mitnik, D. Theoretical Study of the Molecular Properties and Chemical Reactivity of (+) Catechin and (-)-Epicatechin Related to Their Antioxidant Ability. J. Mol. Struct.: THEOCHEM 2006, 761, 97-106. https://doi.org/10.1016/j.theochem.2006.01.001
[21] Wang, J.; Tang H.; Hou, B.; Zhang, P.; Wang, Q.; Zhang, B.-L.; Huang, Y.-W.; Wang, Y.; Xiang, Z.-M.; Zi, C.-T. et al. Synthesis, Antioxidant Activity, and Density Functional Theory Study of Catechin Derivatives. RSC Adv. 2017, 7, 54136-54141. https://doi.org/10.1039/C7RA11496F
[22] Mennucci, B.; Cammi, R. Continuum Solvation Models in Chemical Physics: From Theory to Applications; John Wiley & Sons, Ltd: Chichester, UK, 2007.
[23] Mazzone, G.; Malaj, N.; Russo, N.; Toscano, M. Density Functional Study of the Antioxidant Activity of Some Recently Synthesized Resveratrol Analogues. Food Chem. 2013, 141, 2017-2024. https://doi.org/10.1016/j.foodchem.2013.05.071
[24] Mazzone, G.; Malaj, N.; Galano, A.; Russo, N.; Toscano M. Antioxidant Properties of Several Coumarin–Chalcone Hybrids from Theoretical Insights. RSC Adv. 2015, 5, 565-575. https://doi.org/10.1039/C4RA11733F
[25] Anitha, S.; Krishnan, S.; Senthilkumar, K.; Sasirekha, V. Theoretical Investigation on the Structure and Antioxidant Activity of (+) Catechin and (−) Epicatechin – a Comparative Study. Mol. Phys. 2020, 118, 1745917. https://doi.org/10.1080/00268976.2020.1745917
[26] Wang, A.; Lu, Y.; Du, X.; Shi, P.; Zhang, H. A Theoretical Study on the Antioxidant Activity of Uralenol and Neouralenol Scavenging Two Radicals. Struct. Chem. 2018, 29, 1067-1075. https://doi.org/10.1007/s11224-018-1090-8
[27] Parr, R.G.; von Szentpály, L.; Liu, S.: Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
[28] Ardjani, A.T.E.; Mekelleche, S.M. Analysis of the Antioxidant Activity of 4-(5-Chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic Acid Derivatives Using Quantum-Chemistry Descriptors and Molecular Docking. J. Mol. Model. 2016, 22, 302. https://doi.org/10.1007/s00894-016-3160-4
[29] Vorobyova, V.; Shakun, A.; Chygyrynets, O.; Skiba, M.; Zaporozhets, J. Antioxidant Activity and Phytochemical Screening of the Apricot Cake Extract: Experimental and Theoretical Studies. Chem. Chem. Technol. 2020, 14, 372-379. https://doi.org/10.23939/chcht14.03.372
[30] Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (Vitamin B3) as an Effective Antioxidant against Oxidative Damage in Rat Brain Mitochondria. Redox Rep. 1999, 4, 179-184. https://doi.org/10.1179/135100099101534882