Аргентинська цукрова барда: характеристика фенольних сполук та оцінка адсорбції як можливого методу відновлення
Attachment | Size |
---|---|
full_text.pdf | 338.48 KB |
[1] García, A.; Rojas, C. Posibilidades de Uso de la Vinaza en la Agricultura de Acuerdo con su Modo de Acción en Los Suelos. Nota Técnica Tecnicaña 2006, 10, 3-13.
[2] https://inta.gob.ar/noticias/energia-limpia-para-un-ambiente-sano
[3] Alfaro Portuguez, R.; Ocampo Chinchilla, R. Cambios Físico-Químicosprovocados por la Vinaza en un Suelo Vertisol en Costa Rica. XIX Congreso de la asociación de Técnicos Azucareros de Centroamérica ATACA, 1-12 y 13 de Setiembre del 2013; Costa Rica, San José, 2013.
[4] Parnaudeau, V.; Condom, N.; Oliver, R.; Cazevieille, P.; Recous, P. Vinasse Organic Matter Quality and Mineralization Potential, as Influenced by Raw Material, Fermentation and Concentration Processes. Bioresour. Technol. 2008, 99, 1553-1562. https://doi.org/10.1016/j.biortech.2007.04.012
[5] Robertiello, A. Upgrading of Agricultural and Agroindustrial Waste: The Treatment of Distillery Effluents (Vinasse) in Italy. Agric. Wastes 1981, 4, 387-395.
[6] Coca, M.; Garcı́a, M.T.; Gonzalez, G.; Peña, M.; García, J.A. Study of Coloured Components Formed in Sugar Beet Processing. Food Chem. 2004, 86, 421-433. https://doi.org/10.1016/j.foodchem.2003.09.017
[7] España-Gamboa, E.; Mijangos-Cortes, J.; Barahona-Perez, L.; Dominques-Maldonado, G.; Hernández-Zarate, G.; Alzate-Gaviria, L. Vinasses: Characterization and Treatments. Waste Manag. Res. 2011, 29, 1235-1250. https://doi.org/10.1177/0734242X10387313
[8] Gutiérrez, C.; Grosso, J.; Bullón, L.; Rennola, L., Salazar, F., Cardenas, A. Ultrafiltration de Vinazas Provenientes de Destilerías de Etanol. Revista Ciencia y Tecnología 2009, 30, 121-126.
[9] Díaz Marrero, M.A.; Cabrera Díaz, A.; Regalon Ramos, C. Evaluación del Modelo de Rusten en un Filtro Empacado Aireado Tratando Vinaza Cruda Cubana. RIHA 2019, 40, 39-49. https://riha.cujae.edu.cu/index.php/riha/article/view/487
[10] Lorenzo-Acosta, Y.; Doménech-López, F.; Eng-Sánchez, F.; Almazán-del Olmo, O.; Chanfón-Curbelo, J. M. Tratamiento Industrial de Vinazas de Destilerías en Reactores UASB. Tecnología Química 2015, 35, 108-123.
[11] Cabrera, Díaz A.; Díaz Marrero, M.A. Tratamiento de Vinaza Cubana en un Reactor Anaerobio Empacado de Flujo Ascendente. RIHA 2013, 34, 41-49.
[12] Susial Badajoz, P.; Pérez Báez, S.; López-Pérez, L. Estudio y Análisis Económico en el Tratamiento de Vinazas. Tecnología Del Agua 2001, 21, 48-56.
[13] Chaile, A.; Viera, H.; Ferreyra de Ruiz Holgado, M. Oxidación y Recuperación de Sales Inorgánicas de un Efluente de la Industria Alcoholera, VIIIº Congreso Argentino de Ingeniería Industrial, 12 y 13 de Noviembre de 2015; Córdoba, Argentina, 2015.
[14] Caqueret, V.; Bostyn, S.; Cagnon, B.; Fauduet, H. Purification of Sugar Beet Vinasse – Adsorption of Polyphenolic and Dark Colored Compounds on Different Commercial Activated Carbons. Bioresour. Technol. 2008, 99, 5814-5821. https://doi.org/10.1016/j.biortech.2007.10.009
[15] Gaspard, S.; Altenor, S.; Passe-Coutrin, N.; Ouensanga, A.; Brouers, F. Parameters from a New Kinetic Equation to Evaluate Activated Carbons Efficiency for Water Treatment. Water Res. 2006, 40, 3467-3477. https://doi.org/10.1016/j.watres.2006.07.018
[16] Brouers, F.; Sotolongo-Costa, O. Generalized Fractal Kinetics in Complex Systems (Application to Biophysics and Biotechnology). Phys. A 2006, 368, 165-175. https://doi.org/10.1016/j.physa.2005.12.062
[17] Seixas, F.L.; Gimenes, M.L.; Fernandes-Machado, N.R.C. Treatment of Vinasse by Adsorption on Carbon from Sugar Cane Bagasse. Quím. Nova 2016, 39, 172-179. https://doi.org/10.5935/0100-4042.20160013
[18] Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordoñez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C. et al. Phenol-Explorer 2.0: A Major Update of the Phenol-Explorer Database Integrating Data on Polyphenol Metabolism and Pharmacokinetics in Humans and Experimental Animals. Database 2012, 2012, bas0341. https://doi.org/10.1093/database/bas031
[19] Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Remón, A.; M'Hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S. et al. Phenol-Explorer 3.0: A Major Update of the Phenol-Explorer Database to Incorporate Data on the Effects of Food Processing on Polyphenol Content. Database 2013, 2013, bat070. https://doi.org/10.1093/database/bat070
[20] Rothwell, J.A.; Medina-Remon, A.; Perez-Jimenez, J.; Neveu, V.; Knaze, V.; Slimani, N.; Scalbert, A. Effects of Food Processing on Polyphenol Contents: A Systematic Analysis Using Phenol-Explorer Data. Mol. Nutr. Food Res. 2015, 59, 160-170. https://doi.org/10.1002/mnfr.201400494
[21] Brunauer, S.; Emmett, P.; Teller, E. In Introduction to Characterization and Testing of Catalysts; Anderson, J.R.; Pratt, K.C., Eds.; Academic Press: Sydney, 1985.
[22] Guillot, A.; Stoeckli, F. Reference Isotherm for High Pressure Adsorption of CO2 by Carbons at 273 K. Carbon 2001, 39, 2059-2064. https://doi.org/10.1016/S0008-6223(01)00022-7
[23] Barrett, E.P.; Joyner, L.G.; Halenda, P.P.J. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Am. Ceram. Soc. 1951, 73, 373-380. http://dx.doi.org/10.1021/ja01145a126
[24] Newcombe, G.; Drikas, M. Adsorption of NOM onto Activated Carbon: Electrostatic and Non-Electrostatic Effects. Carbon 1997, 35, 1239-1250. https://doi.org/10.1016/S0008-6223(97)00078-X
[25] Boehm, H.P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon 1994, 32, 759-769. https://doi.org/10.1016/0008-6223(94)90031-0
[26] Faria, P.C.C.; Orfao, J.J.M.; Pereyra, M.F.R. Adsorption of Anionic and Cationic Dyes on Activated Carbons with Different Surface Chemistries. Water Res. 2004, 38, 2043-2052. https://doi.org/10.1016/j.watres.2004.01.034
[27] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Jean Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
[28] Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D.A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. J. Chem. Soc. 1960, 14, 3973-3993. https://doi.org/10.1039/jr9600003973
[29] Garcıa-Araya, J.F.; Beltran, F.J.; Alvarez, P.; Masa, F.J. Activated Carbon Adsorption of Some Phenolic Compounds Present in Agroindustrial Wastewater. Adsorption 2003, 9, 107-115. https://doi.org/10.1023/A:1024228708675
[30] Garg, D.; Kumar, S.; Sharma, K.; Majumder, C.B. Application of Waste Peanut Shells to Form Activated Carbon and its Utilization for the Removal of Acid Yellow 36 from Wastewater. Groundw. Sustain. Dev. 2019, 8, 512-519. https://doi.org/10.1016/j.gsd.2019.01.010
[31] Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F. Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon. Arab. J. Chem. 2017, 10, S3381-S3393. https://doi.org/10.1016/j.arabjc.2014.01.020
[32] Namasivayam, C.; Kavitha, D. Adsorptive Removal of 2,4‐Dichlorophenol from Aqueous Solution by Low‐Cost Carbon from an Agricultural Solid Waste: Coconut Coir Pith. Sep. Sci. Technol. 2005, 39, 1407-1425. https://doi.org/10.1081/SS-120030490
[33] Bansal, R.C.; Goyal, M. Activated Carbon Adsorption. CRC Press: Boca Raton, 2005. https://doi.org/10.1201/9781420028812