Thermophysical Analysis of 25%, 37%, and 45% Aqueous Propylene Glycol Solutions for Heliosystems and Their Analytical Calculation

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Yuriy Bilonoga1, Ihor Dutsyak1, Uliana Drachuk1, Halyna Koval1, Iryna Basarab1, Oksana Pryima1
Affiliation: 
1 Stepan Gzytsky National University of Veterinary Medicine and Biotechnologies, 50 Pekarska St., Lviv 79010, Ukraine yuriy_bilonoha@ukr.net
DOI: 
https://doi.org/10.23939/chcht19.04.673
AttachmentSize
PDF icon full_text.pdf775.77 KB
Abstract: 
The paper analyzes the thermophysical properties of 25%, 37%, and 45% aqueous solutions of propylene glycol for heliosystems as heat carriers. A computer simulation of the movement of these coolants in the pipe space of the heliosystem, with a constant velocity V=0.93 m/s, was carried out. Using classic numerical empirical equations, the thermophysical and hydrodynamic characteristics of these glycol solutions in the temperature range of 243-373 K were found. The distribution of velocity vectors in the “live section” of the tubular space of the solar system follows a quadratic parabola, while the distribution of turbulent heat conductivity and, accordingly, temperatures follows a cubic parabola. A cubic numerical equation, the real root of which is the dimensionless number Blturb, was analytically derived for determining heat transfer coefficients of coolants at any temperature and velocity in the turbulent regime. The distribution of turbulent thermal conductivities kturb (W/m•K) (as well as temperatures, T K) and velocities V (m/s) in a flow with free turbulence for an aqueous solution of 37% propylene glycol at an axial velocity in the center of the flow core V = 0.93 m/s is shown graphically at a temperature of 343 K in the pipe space of the heliosystem with a diameter D = 0.021 m. A relation for finding Blturb numbers for transient modes of motion is obtained, which is mainly implemented in heliosystems.
References: 

[1] Timofeeva, E.V.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L. Base Fluid and Temperature Effects on the Heat Transfer Characteristics of SiC in Ethylene Glycol/H2O and H2O Nanofluids. J. App. Phys. 2011, 109, 014914. https://doi.org/10.1063/1.3524274
https://doi.org/10.1063/1.3524274

[2] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. A New Universal Numerical Equation and a New Method for Calculating Heat-Exchange Equipment using Nanofluids. Int. J. Heat Technol. 2020, 38, 151-164. https://doi.org/10.18280/ijht.380117
https://doi.org/10.18280/ijht.380117

[3] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Substantiation of a New Calculation and Selection Algorithm of Optimal Heat Exchangers with Nanofluid Heat Carriers Taking into Account Surface Forces. Int. J. Heat Technol. 2021, 39, 1697 1712. https://doi.org/10.18280/ijht.390602
https://doi.org/10.18280/ijht.390602

[4] Meyer, P.; Olivier, J. A. Heat Transfer in the Transient Flow Mode. In Evaporation, Condensation and Heat transfer; Ahsan, A., Ed.; In. Tech: Rijeka, 2011; pp 244 260. https://www.researchgate.net/publication/221916244
https://doi.org/10.5772/20079

[5] Bilonoga, Y.; Pokhmurs'kii, V. Connection between the Fretting-Fatigue Endurance of Steels and the Surface Energy of the Abradant Metal. Mater Sci 1991, 26, 629-633. https://doi.org/10.1007/BF00723647
https://doi.org/10.1007/BF00723647

[6] Bilonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Section 1. Optimization of Calculation and Selection of Heat Exchange Equipment in the Use of Nanofluid Heat Carriers. In Resource- and energy-saving technologies in the chemical industry; Baltija Publishing: Riga, Latvia, 2022; pp 1-48. https://doi.org/10.30525/978-9934-26-219-7-1
https://doi.org/10.30525/978-9934-26-219-7-1

[7] Bilonoga, Y.; Atamanyuk, V.; Dutsyak, I.; Drachuk, U.; Koval, H.; Stybel, V. The Method of Calculating the Heat Transfer Coefficient in the Heliosystems with Laminar and Transient Modes of Heat Carrier Flow Movement Structured Into Parts. Chem. Chem. Technol. 2024, 18, 409-416. https://doi.org/10.23939/chcht18.03.409
https://doi.org/10.23939/chcht18.03.409

[8] Bіlonoga, Y.; Maksysko, O. Specific Features of Heat Exchangers Calculation Considering the Laminar Boundary Layer, the Transitional and Turbulent Thermal Conductivity of Heat Carriers. Int. J. Heat Technol. 2018, 36, 11-20. https://doi.org/10.18280/ijht.360102
https://doi.org/10.18280/ijht.360102

[9] Bіlonoga, Y.; Maksysko, O. The Laws of Distribution of the Values of Turbulent Thermo-Physical Characteristics in the Volume of the Flows of Heat Carriers Taking into Account the Surface Forces. Int. J. Heat Technol. 2019, 37, 1-10. https://doi.org/10.18280/ijht.370101
https://doi.org/10.18280/ijht.370101

[10] Bilonoga,. Y.; Atamanyuk, V.; Stybel, V.; Dutsyak, I.; Drachuk, U. Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers. Chem. Chem. Technol. 2023, 17, 608 616. https://doi.org/10.23939/chcht17.03.608
https://doi.org/10.23939/chcht17.03.608

[11] Bіlonoga, Y.; Maksysko, O. Modeling the Interaction of Coolant Flows at the Liquid-Solid Boundary with Allowance for the Laminar Boundary Layer. Int. J. Heat Technol. 2017, 35, 678-682. https://doi.org/10.18280/ijht.350329
https://doi.org/10.18280/ijht.350329

[12] Prandtl, L. Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM Z. fur Angew. Math. Mech. 1925, 2, 136-139. https://doi.org/10.1002/zamm.19250050212
https://doi.org/10.1002/zamm.19250050212

[13] Cantwell, B. J.; Bilgin, E.; Needels, J. T. A New Boundary Layer Integral Method Based on the Universal Velocity Profile. Phys. Fluids [Online] 2022, 34, 075130. https://doi.org/10.1063/5.0100367 (accessed Dec 17, 2024).
https://doi.org/10.1063/5.0100367

[14] Reichardt, H. Gesetzmäßigkeiten der freien Turbulenz; VDJ VDI-Verlag G.m.b.H., 1942.

[15] Reichardt, H. Impuls - und Wärmeaustausch bei freier Turbulenz. ZAMM Z. fur Angew. Math. Mech. 1944, 24, 268-272. https://doi.org/10.1002/zamm.19440240515
https://doi.org/10.1002/zamm.19440240515

[16] Reichardt, H.; Ermshaus, R. Impuls - und Wärmubertragung in turbulenten Windschatten hinter Rotationskörpern. Int. J. Heat Mass Transfer 1962, 5, 251-265. https://doi.org/10.1016/0017-9310(62)90015-7
https://doi.org/10.1016/0017-9310(62)90015-7

[17] Hilchuk, A.V.; Khalatov, A.A.; Donyk, T.V. Teoria teploprovidnosti; KPI im. I.Sikorskoho: Kyiv, 2022.

[18] Taylor, G.I. The Transport of Velocity and Heat Through Fluids in Turbulent Motion. Proc. R. Soc. Lond. A 1932, 135, 685-702. https://doi.org/10.1098/rspa.1932.0061
https://doi.org/10.1098/rspa.1932.0061

[19] Schlichting, H. Boundary - Layer Theory; McGraw-Hill, 1979.

[20] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Drying Process During Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263-271. https://doi.org/10.23939/chcht12.02.263
https://doi.org/10.23939/chcht12.02.263

[21] Ivashchuk, O.; Atamanyuk,V.; Chyzhovych, R.; Manastyrska V.; Barabakh, S.; Hnativ, Z. Kinetic Regularities of the Filtration Drying of Barley Brewer's Spent Grain. Chem. Chem. Technol. 2024, 18, 66-75. https://doi.org/10.23939/chcht18.01.066
https://doi.org/10.23939/chcht18.01.066

[22] Quadrio, M.; Ricco, P. The Laminar Generalized Stokes Layer and Turbulent Drag Reduction. J. Fluid Mech. 2011, 667, 135-157. http://dx.doi.org/10.1017/S0022112010004398
https://doi.org/10.1017/S0022112010004398