| Attachment | Size |
|---|---|
| 775.77 KB |
[1] Timofeeva, E.V.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L. Base Fluid and Temperature Effects on the Heat Transfer Characteristics of SiC in Ethylene Glycol/H2O and H2O Nanofluids. J. App. Phys. 2011, 109, 014914. https://doi.org/10.1063/1.3524274
https://doi.org/10.1063/1.3524274
[2] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. A New Universal Numerical Equation and a New Method for Calculating Heat-Exchange Equipment using Nanofluids. Int. J. Heat Technol. 2020, 38, 151-164. https://doi.org/10.18280/ijht.380117
https://doi.org/10.18280/ijht.380117
[3] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Substantiation of a New Calculation and Selection Algorithm of Optimal Heat Exchangers with Nanofluid Heat Carriers Taking into Account Surface Forces. Int. J. Heat Technol. 2021, 39, 1697 1712. https://doi.org/10.18280/ijht.390602
https://doi.org/10.18280/ijht.390602
[4] Meyer, P.; Olivier, J. A. Heat Transfer in the Transient Flow Mode. In Evaporation, Condensation and Heat transfer; Ahsan, A., Ed.; In. Tech: Rijeka, 2011; pp 244 260. https://www.researchgate.net/publication/221916244
https://doi.org/10.5772/20079
[5] Bilonoga, Y.; Pokhmurs'kii, V. Connection between the Fretting-Fatigue Endurance of Steels and the Surface Energy of the Abradant Metal. Mater Sci 1991, 26, 629-633. https://doi.org/10.1007/BF00723647
https://doi.org/10.1007/BF00723647
[6] Bilonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Section 1. Optimization of Calculation and Selection of Heat Exchange Equipment in the Use of Nanofluid Heat Carriers. In Resource- and energy-saving technologies in the chemical industry; Baltija Publishing: Riga, Latvia, 2022; pp 1-48. https://doi.org/10.30525/978-9934-26-219-7-1
https://doi.org/10.30525/978-9934-26-219-7-1
[7] Bilonoga, Y.; Atamanyuk, V.; Dutsyak, I.; Drachuk, U.; Koval, H.; Stybel, V. The Method of Calculating the Heat Transfer Coefficient in the Heliosystems with Laminar and Transient Modes of Heat Carrier Flow Movement Structured Into Parts. Chem. Chem. Technol. 2024, 18, 409-416. https://doi.org/10.23939/chcht18.03.409
https://doi.org/10.23939/chcht18.03.409
[8] Bіlonoga, Y.; Maksysko, O. Specific Features of Heat Exchangers Calculation Considering the Laminar Boundary Layer, the Transitional and Turbulent Thermal Conductivity of Heat Carriers. Int. J. Heat Technol. 2018, 36, 11-20. https://doi.org/10.18280/ijht.360102
https://doi.org/10.18280/ijht.360102
[9] Bіlonoga, Y.; Maksysko, O. The Laws of Distribution of the Values of Turbulent Thermo-Physical Characteristics in the Volume of the Flows of Heat Carriers Taking into Account the Surface Forces. Int. J. Heat Technol. 2019, 37, 1-10. https://doi.org/10.18280/ijht.370101
https://doi.org/10.18280/ijht.370101
[10] Bilonoga,. Y.; Atamanyuk, V.; Stybel, V.; Dutsyak, I.; Drachuk, U. Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers. Chem. Chem. Technol. 2023, 17, 608 616. https://doi.org/10.23939/chcht17.03.608
https://doi.org/10.23939/chcht17.03.608
[11] Bіlonoga, Y.; Maksysko, O. Modeling the Interaction of Coolant Flows at the Liquid-Solid Boundary with Allowance for the Laminar Boundary Layer. Int. J. Heat Technol. 2017, 35, 678-682. https://doi.org/10.18280/ijht.350329
https://doi.org/10.18280/ijht.350329
[12] Prandtl, L. Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM Z. fur Angew. Math. Mech. 1925, 2, 136-139. https://doi.org/10.1002/zamm.19250050212
https://doi.org/10.1002/zamm.19250050212
[13] Cantwell, B. J.; Bilgin, E.; Needels, J. T. A New Boundary Layer Integral Method Based on the Universal Velocity Profile. Phys. Fluids [Online] 2022, 34, 075130. https://doi.org/10.1063/5.0100367 (accessed Dec 17, 2024).
https://doi.org/10.1063/5.0100367
[14] Reichardt, H. Gesetzmäßigkeiten der freien Turbulenz; VDJ VDI-Verlag G.m.b.H., 1942.
[15] Reichardt, H. Impuls - und Wärmeaustausch bei freier Turbulenz. ZAMM Z. fur Angew. Math. Mech. 1944, 24, 268-272. https://doi.org/10.1002/zamm.19440240515
https://doi.org/10.1002/zamm.19440240515
[16] Reichardt, H.; Ermshaus, R. Impuls - und Wärmubertragung in turbulenten Windschatten hinter Rotationskörpern. Int. J. Heat Mass Transfer 1962, 5, 251-265. https://doi.org/10.1016/0017-9310(62)90015-7
https://doi.org/10.1016/0017-9310(62)90015-7
[17] Hilchuk, A.V.; Khalatov, A.A.; Donyk, T.V. Teoria teploprovidnosti; KPI im. I.Sikorskoho: Kyiv, 2022.
[18] Taylor, G.I. The Transport of Velocity and Heat Through Fluids in Turbulent Motion. Proc. R. Soc. Lond. A 1932, 135, 685-702. https://doi.org/10.1098/rspa.1932.0061
https://doi.org/10.1098/rspa.1932.0061
[19] Schlichting, H. Boundary - Layer Theory; McGraw-Hill, 1979.
[20] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Drying Process During Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263-271. https://doi.org/10.23939/chcht12.02.263
https://doi.org/10.23939/chcht12.02.263
[21] Ivashchuk, O.; Atamanyuk,V.; Chyzhovych, R.; Manastyrska V.; Barabakh, S.; Hnativ, Z. Kinetic Regularities of the Filtration Drying of Barley Brewer's Spent Grain. Chem. Chem. Technol. 2024, 18, 66-75. https://doi.org/10.23939/chcht18.01.066
https://doi.org/10.23939/chcht18.01.066
[22] Quadrio, M.; Ricco, P. The Laminar Generalized Stokes Layer and Turbulent Drag Reduction. J. Fluid Mech. 2011, 667, 135-157. http://dx.doi.org/10.1017/S0022112010004398
https://doi.org/10.1017/S0022112010004398