Synthesis and Tailoring the Optimization and Dielectric Properties of PMMA/PEG/Barium Titanate Hybrid Nanostructures for Energy Storage and Electronics Applications

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Aseel Hadi1, Saba R. Salman2, Najah M. L. Al Maimuri3, Ahmed Hashim2, Farhan Lafta Rashid4, Ali S. Hasan5
Affiliation: 
1 Department of Ceramic and Building Materials, College of Materials Engineering, University of Babylon, Babylon, Iraq 2 Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq 3 Building and Construction Technologies Engineering Department, College of Engineering and Engineering Technologies, Al-Mustaqbal University, Babylon, Iraq 4 University of Kerbala, College of Engineering, Petroleum Engineering Department, Kerbala, Iraq 5 University of Babylon, College of materials Engineering,, Department of polymer and Petrochemical Industries, Babylon, Iraq ahmed_taay@yahoo.com
DOI: 
https://doi.org/10.23939/chcht19.02.277
AttachmentSize
PDF icon full_text.pdf812.81 KB
Abstract: 
The present work aims to improve the dielectric properties of poly-methyl methacrylate (PMMA)- polyethylene glycol (PEG) blend doped with barium titanate (BaTiO3) nanoparticles to be useful in electronics and dielectric fields. The PMMA/PEG/BaTiO3 nanocomposite films were fabricated by using the casting method. The morphological and dielectric characteristics of PMMA/PEG/BaTiO3 nanocomposite films were tested. The dielectric characteristics were examined by LCR meter at frequencies ranging from 100 Hz to 5 MHz. The results of dielectric characteristics confirmed that there is a growth in the dielectric parameters of PMMA/PEG blend with increasing BaTiO3 NPs content. The dielectric properties of PMMA/PEG/BaTiO3 nanocomposite films were distorted with a boost of the frequency. Finally, dielectric characteristics show that the PMMA/PEG/BaTiO3 nanocomposite films can be utilized in various electrical and nanoelectronics applications with high energy storage, lightweight, low cost, and flexibility.
References: 

[1] Rehman, S.U.; Javaid, S.; Shahid, M.; Gul, I.H.; Rashid, B.; Szczepanski, C.R.; Naveed, M.; Curley, S.J. Polystyrene-Sepiolite Clay Nanocomposites with Enhanced Mechanical and Thermal Properties. Polymers 2022, 14, 3576. https://doi.org/10.3390/polym14173576
[2] Wang, Q.; Che, J.; Wu, W.; Hu, Z.; Liu, X.; Ren, T.; Chen, Y.; Zhang, J. Contributing Factors of Dielectric Properties for Polymer Matrix Composites. Polymers 2023, 15, 590. https://doi.org/10.3390/polym15030590
[3] Vyshakh, K.; Arun, K.; Sathian, R.; Furhan, A.; Verma, M.; Ramesan, M. Effect of Boehmite Nanoparticles on Structural, Optical, Thermal, Mechanical and Electrical Properties of poly(Methyl Methacrylate) Nanocomposites for Flexible Optoelectronic Devices. J. Thermoplast. Compos. Mater. 2023, 36, 4927–4944. https://doi.org/10.1177/08927057231167418
[4] Suvarna, S.; Niranjana, V.; Subburaj, M.; Ramesan, M. Temperature-Dependent Conductivity, Optical Properties, Thermal Stability and Dielectric Modelling Studies of Cu-Al2O3/CPE/PVC Blend Nanocomposites. Bull. Mater. Sci. 2022, 45, 246. https://doi.org/10.1007/s12034-022-02829-8
[5] El-Naggar, A.; Heiba, Z.K.; Kamal, A.; Abd-Elkader, O.H.; Mohamed, M.B. Impact of ZnS/Mn on the Structure, Optical, and Electric Properties of PVC Polymer. Polymers 2023, 15, 2091. https://doi.org/10.3390/polym15092091
[6] Vanskeviče, I.; Kinka, M.; Banys, J.; Macutkevič, J.; Schaefer, S.; Selskis, A.; Fierro, V.; Celzard, A. Dielectric and Ultrasonic Properties of PDMS/TiO2 Nanocomposites. Polymers 2024, 16, 603. https://doi.org/10.3390/polym16050603
[7] Papava, G.; Chitrekashvili, I.; Tatrishvili, T.; Gurgenishvili, M.; Archvadze, K.; Dokhturishvili, N.; Gavashelidze, E.; Gelashvili, N.; Liparteliani, R. Synthesis and Investigation of Properties of Epoxy-Novolac Copolymers Based on Polycyclic Bisphenols of Norbornane Type. Chem. Chem. Technol. 2024, 18, 546–557. https://doi.org/10.23939/chcht18.04.546
[8] Bafna, M.; Deeba, F.; Gupta, A.K.; Shrivastava, K.; Kulshrestha, V.; Jain, A. Analysis of Dielectric Parameters of Fe2O3-Doped Polyvinylidene Fluoride/Poly(methyl methacrylate) Blend Composites. Molecules 2023, 28, 5722. https://doi.org/10.3390/molecules28155722
[9] Guimarães, N.E.; Ximenes, É.R.; da Silva, L.A.; da Silva Santos, R.F.; Araújo, E.S.; da Silva Aquino, K.A. Electrical and Optical Properties of Poly(vinyl chloride)/ZnS Nanocomposites Exposed to Gamma Radiation. Mater. Res. 2023, 26, e20220308. https://doi.org/10.1590/1980-5373-mr-2022-0308
[10] Deeba, F.; Shrivastava, K.; Bafna, M.; Jain, A. Tuning of Dielectric Properties of Polymers by Composite Formation: The Effect of Inorganic Fillers Addition. J. Compos. Sci. 2022, 6, 355. https://doi.org/10.3390/jcs6120355
[11] Abbas, M.H.; Hadi, A.; Rabee, B.H.; Habeeb, M.A.; Mohammed, M.K.; Hashim, A. Enhanced Dielectric Characteristics of Cr2O3 Nanoparticles Doped PVA/PEG for Electrical Applications. Rev. Compos. Mater. Av. 2023, 33, 261. https://doi.org/10.18280/rcma.330407
[12] Yaqub, N.; Farooq, W.; AlSalhi, M. Delving into the Properties of Polymer Nanocomposites with Distinctive Nano-Particle Quantities, for the Enhancement of Optoelectronic Devices. Heliyon 2020, 6, e05597. https://doi.org/10.1016/j.heliyon.2020.e05597
[13] Abbas, M.H.; Ibrahim, H.; Hashim, A.; Hadi, A. Fabrication and Tailoring Structural, Optical, and Dielectric Properties of PS/CoFe2O4 Nanocomposites Films for Nanoelectronics and Optics Applications. Trans. Electr. Electron. Mater. 2024, 25, 449–457. https://doi.org/10.1007/s42341-024-00524-5
[14] Sarhan, A. Characterization of Chitosan and Polyethylene Glycol Blend Film. Egypt. J. Chem. 2019, 62, 405–412. https://doi.org/10.21608/ejchem.2019.11668.1743
[15] Ali, W.A.; Mihsen, H.H., Guzar, S.H. Synthesis, Characterization and Antibacterial Activity of Sn (II) and Sn (IV) Ions Complexes Containing N-Alkyl-N-Phenyl Dithiocarbamate Ligands. Chem. Chem. Technol. 2023, 17, 729–739. https://doi.org/10.23939/chcht17.04.729
[16] Mohammed, M.K.; Abbas, M.H.; Hashim, A.; Rabee, R.; Habeeb, M.A.; Hamid, N. Enhancement of Optical Parameters for PVA/PEG/Cr2O3 Nanocomposites for Photonics Fields. Rev. Compos. Mater. Av. 2022, 32, 205–209. https://doi.org/10.18280/rcma.320406
[17] Gioti, S.; Sanida, A.; Mathioudakis, G.N.; Patsidis, A.C.; Speliotis, T.; Psarras, G.C. Multitasking Performance of Fe3O4/BaTiO3/Epoxy Resin Hybrid Nanocomposites. Materials 2022, 15, 1784. https://doi.org/10.3390/ma15051784
[18] Huang, C.-L. A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass. Coatings 2020, 10, 781. https://doi.org/10.3390/coatings10080781
[19] Ahmed, H.; Hashim, A. Design and Tailoring the Structural and Spectroscopic Characteristics of Sb2S3 Nanostructures Doped PMMA for Flexible Nanoelectronics and Optical Fields. Opt. Quantum Electron. 2023, 55, 280. https://doi.org/10.1007/s11082-022-04528-4
[20] Hazim, A.; Abduljalil, H.M.; Hashim, A. Design of PMMA Doped with Inorganic Materials as Promising Structures for Optoelectronics Applications. Trans. Electr. Electron. Mater. 2021, 22, 851–868. https://doi.org/10.1007/s42341-021-00308-1
[21] Hashim, A.; Alshrefi, S.M.; Abed, H.H.; Hadi, A. Synthesis and Boosting the Structural and Optical Characteristics of PMMA/SiC/CdS Hybrid Nanomaterials for Future Optical and Nanoelectronics Applications. J. Inorg. Organomet. Polym. Mater. 2024, 34, 703–711. https://doi.org/10.1007/s10904-023-02866-8
[22] Ahmed, H.; Hashim, A. Lightweight, Flexible and High Energies Absorption Property of PbO2 Doped Polymer Blend for Various Renewable Approaches. Trans. Electr. Electron. Mater. 2021, 22, 335–345. https://doi.org/10.1007/s42341-020-00244-6
[23] Hazim, A.; Abduljalil, H.M.; Hashim, A. First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications. Trans. Electr. Electron. Mater. 2021, 22, 185–203. https://doi.org/10.1007/s42341-020-00224-w
[24] Ahmed, H.; Hashim, A. Geometry Optimization, Optical and Electronic Characteristics of Novel PVA/PEO/SiC Structure for Electronics Applications. Silicon 2021, 13, 2639–2644. https://doi.org/10.1007/s12633-020-00620-0
[25] Ahmed, H.; Hashim, A. Structure, Optical, Electronic and Chemical Characteristics of Novel (PVA-CoO) Structure Doped with Silicon Carbide. Silicon 2021, 13, 4331–4344. https://doi.org/10.1007/s12633-020-00723-8
[26] Ahmed, H.; Hashim, A. Design and Tailoring the Optical and Electronic Characteristics of Silicon Doped PS/SnS2 New Composites for Nano-Semiconductors Devices. Silicon 2022, 14, 6637–6643. https://doi.org/10.1007/s12633-021-01449-x
[27] Ahmed, H.; Hashim, A. Exploring the Design, Optical and Electronic Characteristics of Silicon Doped (PS-B) New Structures for Electronics and Renewable Approaches. Silicon 2022, 14, 7025–7032. https://doi.org/10.1007/s12633-021-01465-x
[28] Ahmed, H., Hashim, A. Exploring the Characteristics of New Structure Based on Silicon Doped Organic Blend for Photonics and Electronics Applications. Silicon 2022, 14, 4907–4914. https://doi.org/10.1007/s12633-021-01258-2
[29] Hashim, A.; Abduljalil, H. M.; Ahmed, H. Analysis of Optical, Electronic and Spectroscopic properties of (Biopolymer-SiC) Nanocomposites for Electronics Applications. Egypt. J. Chem. 2019, 62, 1659–1672. https://doi.org/10.21608/EJCHEM.2019.7154.1590
[30] Althobaiti, M.G.; Alosaimi, M.A.; Alharthi, S.S.; Alotaibi, A.A.; Badawi, A. Tailoring the Optical Performance of Sprayed NiO Nanostructured Films through Cobalt Doping for Optoelectronic Device Applications. Opt. Mater. 2024, 151, 115341. https://doi.org/10.1016/j.optmat.2024.115341
[31] Badawi, A. Enhancement of the Optical Properties of PVP Using Zn1-xSnxS for UV-Region Optical Applications. Appl. Phys. A 2021, 127, 51. https://doi.org/10.1007/s00339-020-04157-2
[32] Badawi, A. Engineering the Optical Properties of PVA/PVP Polymeric Blend in situ Using Tin Sulfide for Optoelectronics. Appl. Phys. A 2020, 126, 335. https://doi.org/10.1007/s00339-020-03514-5
[33] Alharthi, S.S.; Althobaiti, M.G.; Aljohani, T.; Algethami, M.; Badawi, M. Correlation between the Optical Parameters of CuO Polymeric Nanocomposite and Gamma Dose for Applications in Irradiation Issues. Opt. Mater. 2024, 150, 115164. https://doi.org/10.1016/j.optmat.2024.115164
[34] Alharthi, S.S.; Badawi, A. Tailoring the Linear and Nonlinear Optical Characteristics of PVA/PVP Polymeric Blend Using Co0.9Cu0.1S Nanoparticles for Optical and Photonic Applications. Opt. Mater. 2022, 127, 112255. https://doi.org/10.1016/j.optmat.2022.112255
[35] Badawi, A.; Alharthi, S.S. Enhancement the Optical and Electrical Performance of PVA/MWCNTs Blend via Cu/ZnS Nanoparticles Doping for Flexible Eco-Friendly Applications. Appl. Phys. A 2023, 129, 372. https://doi.org/10.1007/s00339-023-06640-y
[36] Badawi, A.; Alharthi, S.S.; Assaedi, H.; Alharbi, A.N.; Althobaiti, M.G. Cd0.9Co0.1S Nanostructures Concentration Study on the Structural and Optical Properties of SWCNTs/PVA Blend. Chem. Phys. Lett. 2021, 775, 138701. https://doi.org/10.1016/j.cplett.2021.138701
[37] Badawi, A.; Mersal, G.A.M.; Shaltout, A.A.; Boman, J.; Alsawat, M.; Amin, M.A. Exploring the Structural and Optical Properties of FeS Filled Graphene/PVA Blend for Environmental-Friendly Applications. J. Polym. Res 2021, 28, 270. https://doi.org/10.1007/s10965-021-02626-7
[38] Badawi, A.; Alharthi, S.S.; Alotaibi, A.A.; Althobaiti, M.G. Investigation of the Mechanical and Electrical Properties of SnS Filled PVP/PVA Polymeric Composite Blends. J. Polym. Res. 2021, 28, 205. https://doi.org/10.1007/s10965-021-02569-z
[39] Badawi, A.; Alharthi, S.S. A Comprehensive Study of the Linear/Nonlinear Optical and Electrical Features of rGO/Co: TiO2 Nanostructures Incorporated PVP/PVA Blend. J. Inorg. Organomet. Polym. 2024, 34, 5805–5816. https://doi.org/10.1007/s10904-024-03215-z
[40] Alharthi, S.S.; Badawi, A. Effect of Ag/CuS Nanoparticles Loading to Enhance Linear/Nonlinear Spectroscopic and Electrical Characteristics of PVP/PVA Blends for Flexible Optoelectronics. J. Vinyl. Add. Tech. 2024, 30, 230–243. https://doi.org/10.1002/vnl.22044
[41] Grytsenko, O.; Bratychak Jr., M.; Dulebova, L.; Gajdoš, I. Thermophysical Properties of Composite Metal-Filled Copolymers of Polyvinylpyrrolidone. Chem. Chem. Technol. 2024, 18, 37–43. https://doi.org/10.23939/chcht18.01.037
[42] Ouis, N.; Belarbi, A.; Mesli, S.; Benharrats, N. Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites. Chem. Chem. Technol. 2023, 17, 118–125. https://doi.org/10.23939/chcht17.01.118
[43] Ghasemi, A.; Ghasemi, Z. Application of SD/MNP/PEI Nanocomposite for Heavy Metals Sorption. Chem. Chem. Technol. 2023, 17, 878–886. https://doi.org/10.23939/chcht17.04.878
[44] Abdel-Baset, T.; Hassen, A. Dielectric Relaxation Analysis and Ac Conductivity of Polyvinyl Alcohol/Polyacrylonitrile Film. Physica B 2016, 499, 24–28. https://doi.org/10.1016/j.physb.2016.07.002
[45] Shivashankar, H.; Mathias, K.A.; Sondar, P.R.; Shrishail, M.; Kulkarni, S. Study on low-Frequency Dielectric Behavior of the Carbon Black/Polymer Nanocomposite. J. Mater. Sci.: Mater. Electron. 2021, 32, 28674–28686. https://doi.org/10.1007/s10854-021-07242-1
[46] Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, I.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711–718. https://doi.org/10.23939/chcht17.04.711
[47] Elbayoumy, E.; El-Ghamaz, N.A.; Mohamed, F.S.; Diab, M.A.; Nakano, T. Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked-Vinyl Polymers and their Pd (OAc) 2 Composites. Polymers 2021, 13, 3005. https://doi.org/10.3390/polym13173005
[48] El-Wahab, A.; Aly, L.; El-Hag, A. Dielectric Properties, Impedance Analysis, and Electrical Conductivity of Ag Doped Radiation Grafted Polypropylene. Egypt. J. Radiat. Sci. Appl. 2017, 30, 95–107. https://doi.org/10.21608/ejrsa.2017.1260
[49] Alhusaiki-Alghamdi, H.M. The Spectroscopic and Physical Properties of PMMA/PCL Blend Incorporated with Graphene Oxide. Results Phys. 2021, 24, 104125. https://doi.org/10.1016/j.rinp.2021.104125
[50] Beena, P.; Jayanna, H. Dielectric Studies and AC Conductivity of Piezoelectric Barium Titanate Ceramic Polymer Composites. Polym. Polym. Compos. 2019, 27, 619–625. https://doi.org/10.1177/0967391119856140
[51] Hasan, A.S.; Mohammed, F.Q.; Takz, M.M. Design and Synthesis of Graphene Oxide-Based Glass Substrate and its Antimicrobial Activity against MDR Bacterial Pathogens. J. Mech. Eng. Res. Dev. 2020, 43, 11–17.
[52] Kadhim, A.F.; Hashim, A. Fabrication and Tuning the Structural and Dielectric Characteristics of PS/SiO2/SrTiO3 Hybrid Nanostructures for Nanoelectronics and Energy Storage Devices. Silicon 2023, 15, 4613–4621. https://doi.org/10.1007/s12633-023-02381-y
[53] Reddy, P.L.; Deshmukh, K.; Chidambaram, K.; Ali, M.M.N.; Sadasivuni, K.K.; Kumar, Y.R.; Lakshmipathy, R.; Pasha, S.K. Dielectric Properties of Polyvinyl Alcohol (PVA) Nanocomposites Filled with Green Synthesized Zinc Sulphide (ZnS) Nanoparticles. J. Mater. Sci.: Mater. Electron. 2019, 30, 4676–4687. https://doi.org/10.1007/s10854-019-00761-y
[54] Mishra, S. Dielectric Behavior of Bio-Waste Reinforced Polymer Composites. Global Journal Of Engineering Science And Researches 2014, 1, 32–44.
[55] Meteab, M.H.; Hashim, A.; Rabee, B.H. Controlling the Structural and Dielectric Characteristics of PS-PC/Co2O3-SiC Hybrid Nanocomposites for Nanoelectronics Applications. Silicon 2023, 15, 251–261. https://doi.org/10.1007/s12633-022-02020-y
[56] Hussien, H.A.J.; Hashim, A. Synthesis and Exploring the Structural, Electrical and Optical Characteristics of PVA/TiN/SiO2 Hybrid Nanosystem for Photonics and Electronics Nanodevices. J. Inorg. Organomet. Polym. 2023, 33, 2331–2345. https://doi.org/10.1007/s10904-023-02688-8
[57] Hashim, A.; Hadi, Q. Novel of (Niobium Carbide/Polymer Blend) Nanocomposites: Fabrication and Characterization for Pressure Sensor. Sens. Lett. 2017, 15, 951–953. https://doi.org/10.1166/sl.2017.3892
[58] Agool, I. R.; Mohammed, F. S.; Hashim, A. The Effect of Magnesium Oxide Nanoparticles on the Optical and Dielectric Properties of (PVA-PAA-PVP) Blend. Advances in Environmental Biology 2015, 9, 1.
[59] Ahmed, G.; Hashim, A., Synthesis of PMMA/PEG/Si3N4 Nanostructures and Exploring the Structural and Dielectric Characteristics for Flexible Nanoelectronics Applications. Silicon 2023, 15, 3977–3985. https://doi.org/10.1007/s12633-023-02322-9
[60] Hashim, A.; Hadi, A.; Al-Aaraji, N.A.-H.; Rashid, F.L. Fabrication and Augmented Structural, Optical and Electrical Features of PVA/Fe2O3/SiC Hybrid Nanosystem for Optics and Nanoelectronics Fields. Silicon 2023, 15, 5725–5734. https://doi.org/10.1007/s12633-023-02471-x
[61] Hashim, A.; Hadi, A. Synthesis and Characterization of Novel Piezoelectric and Energy Storage Nanocomposites: Biodegradable Materials–Magnesium Oxide Nanoparticles. Ukrainian Journal of Physics 2017, 62, 1050. https://doi.org/10.15407/ujpe62.12.1050
[62] Hashim, A.; Hadi, A. A Novel Piezoelectric Materials Prepared from (Carboxymethyl Cellulose-Starch) Blend-Metal Oxide Nanocomposites. Sens. Lett. 2017, 15, 1019–1022. https://doi.org/10.1166/sl.2017.3910
[63] Hashim, A.; Hadi, A.; Al-Aaraji, N.AH. Fabrication and Augmented Electrical and optical Characteristics of PMMA/CoFe2O4/ZnCoFe2O4 Hybrid Nanocomposites for Quantum Optoelectronics Nanosystems. Opt. Quantum Electron. 2023, 55, 716. https://doi.org/10.1007/s11082-023-04994-4
[64] Meteab, M.H.; Hashim, A.; Rabee, B.H. Synthesis and Characteristics of SiC/MnO2/PS/PC QuaternaryNanostructures for Advanced Nanodielectrics Fields. Silicon 2023, 15, 1609–1620. https://doi.org/10.1007/s12633-022-02114-7
[65] Huang, X.; Wang, S.; Zhu, M.; Yang, K.; Jiang, P.; Bando, Y.; Golberg, D.; Zhi, C. Thermally Conductive, Electrically Insulating and Melt-Processable Polystyrene/Boron Nitride Nanocomposites Prepared by in situ Reversible Addition Fragmentation Chain Transfer Polymerization. Nanotechnology 2014, 26, 015705. https://doi.org/10.1088/0957-4484/26/1/015705
[66] Abdullah, O.G.; Saber, D.R.; Hamasalih, L.O. Complexion Formation in PVA/PEO/CuCl2 Solid Polymer Electrolyte. Universal Journal of Materials Science 2015, 3, 1–5. https://doi.org/10.13189/ujms.2015.030101
[67] Rithin Kumar, N.; Crasta, V.; Bhajantri, R.F., Praveen, B. Microstructural and Mechanical Studies of PVA Doped with ZnO and WO3 Composites Films. J. Polym. 2014, 2014, 846140. https://doi.org/10.1155/2014/846140
[68] Meteab, M.H.; Hashim, A.; Rabee, B.H. Synthesis and Tailoring the Morphological, Optical, Electronic and Photodegradation Characteristics of PS–PC/MnO2–SiC Quaternary Nanostructures. Opt. Quantum Electron. 2023, 55, 187. https://doi.org/10.1007/s11082-022-04447-4
[69] Kadhim, A.F.; Hashim, A. Fabrication and Augmented Structural Optical Properties of PS/SiO2/SrTiO3 Hybrid Nanostructures for Optical and Photonics Applications. Opt Quant Electron 2023, 55, 432. https://doi.org/10.1007/s11082-023-04699-8
[70] Ahmed, G.; Hashim, A. Synthesis and Tailoring Morphological and Optical Characteristics of PMMA/PEG/Si3N4 Hybrid Nanomaterials for Optics and Quantum Nanoelectronics Applications. Silicon 2023, 15, 7085–7093. https://doi.org/10.1007/s12633-023-02572-7
[71] Hashim, A.; Hadi, A.; Abbas, M.H. Fabrication and Unraveling the Morphological, Optical and Electrical Features of PVA/SnO2/SiC Nanosystem for Optics and Nanoelectronics Applications. Opt. Quantum Electron. 2023, 55, 642. https://doi.org/10.1007/s11082-023-04929-z
[72] Gaabour, L. Effect of Addition of TiO2 Nanoparticles on Structural and Dielectric Properties of Polystyrene/Polyvinyl Chloride Polymer Blend. AIP Adv. 2021, 11, 105120. https://doi.org/10.1063/5.0062445
[73] Kareem, A.; Hashim, A.; Hassan, H.B. Ameliorating and Tailoring the Morphological, Structural, and Dielectric Features of Si3N4/CeO2 Futuristic Nanocomposites Doped PEO for Nanoelectronic and Nanodielectric Applications. J. Mater. Sci.: Mater. Electron 2024, 35, 461. https://doi.org/10.1007/s10854-024-12278-0
[74] Vasudevan, P.; Thomas, S. Synthesis and Dielectric Studies of Poly (Vinyl Pyrrolidone)/Titanium Dioxide Nanocomposites. IOP Conf. Ser.: Mater. Sci. Eng. 2015, 73, 012015. https://doi.org/10.1088/1757-899X/73/1/012015