Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Pore Structure and Adsorption Properties of Coal-Based Activated Carbons Prepared by Thermal-Shock Alkaline Activation

Viktoriia Sabierova1, Yuliia Tamarkina1, Volodymyr Kucherenko1
Affiliation: 
1 L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, National Academy of Sciences of Ukraine, Kharkivske shose, 50, Kyiv 02155, Ukraine victoria.bondaletova@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.03.434
AttachmentSize
PDF icon full_text.pdf239.76 KB
Abstract: 
The adsorption of phenol, 4-chlorophenol, methylene blue, and Pb(II) by coal-based activated carbons prepared by a thermal shock alkaline activation was studied for the first time. The adsorption kinetics and isotherms were measured and compared with those of carbons obtained by a temperature-programmed activation. The adsorption rate was determined to be limited by the interaction of adsorbate with surface centers, and not by the diffusion into pores. Thermal shock increases adsorption rates by 1.18 – 3.16 times and equilibrium capacities by 1.13 – 2.08 times, depending on the adsorbate and the coal type. The carbons prepared by thermal shock were found to be more effective adsorbents for water purification from ecotoxicants.
References: 

[1] Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. https://doi.org/10.1016/j.rineng.2022.100678
https://doi.org/10.1016/j.rineng.2022.100678

[2] Garba, Z.N.; Zhou, W.; Lawan, I.; Xiao, W.; Zhang, M.; Wang, L.; Chen, L.; Yuan, Z. An Overview of Chlorophenols as Contaminants and their Removal from Wastewater by Adsorption: A Review. J. Environ. Manage. 2019, 241, 59-75. https://doi.org/10.1016/j.jenvman.2019.04.004
https://doi.org/10.1016/j.jenvman.2019.04.004

[3] Biswal, B.K.; Balasubramanian, R. Use of Biochar as a Low-Cost Adsorbent for Removal of Heavy Metals from Water and Wastewater: A Review. J. Environ. Chem. Eng. 2023, 11, 110986. https://doi.org/10.1016/j.jece.2023.110986
https://doi.org/10.1016/j.jece.2023.110986

[4] Nahurskyi, N.; Malovanyy, M.; Bordun, I.; Szymczykiewicz, E. Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review. Chem. Chem. Technol. 2024, 18, 170-186. https://doi.org./10.23939/chcht18.02.170
https://doi.org/10.23939/chcht18.02.170

[5] Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A.. Unlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211-231. https://doi.org/10.23939/chcht18.02.211
https://doi.org/10.23939/chcht18.02.211

[6] Javed, H.; Luong, D.X.; Lee, C.-G.; Zhang, D.; Tour, J.M.; Alvarez, P.J.J. Efficient Removal of Bisphenol-A by Ultra-High Surface Area Porous Activated Carbon Derived from Asphalt. Carbon 2018, 140, 441-448. https://doi.org/10.1016/j.carbon.2018.08.038
https://doi.org/10.1016/j.carbon.2018.08.038

[7] Mochizuki, T.; Kubota, M.; Matsuda, H.; D'Elia Camacho, L.F. Adsorption Behaviors of Ammonia and Hydrogen Sulfide on Activated Carbon Prepared from Petroleum Coke by KOH Chemical Activation. Fuel Process. Technol. 2016, 144, 164-169. https://doi.org/10.1016/j.fuproc.2015.12.012
https://doi.org/10.1016/j.fuproc.2015.12.012

[8] Liu, Z.; Hu, J.; Shen, F.; Tian, D.; Huang, M.; He, J.; Zou, J.; Zhao, L.; Zeng, Y. Trichoderma Bridges Waste Biomass and Ultra-High Specific Surface Area Carbon to Achieve a High-Performance Supercapacitor. J. Power Sources. 2021, 497, 229880. https://doi.org/10.1016/j.jpowsour.2021.229880
https://doi.org/10.1016/j.jpowsour.2021.229880

[9] Hamyali, H.; Nosratinia, F.; Rashidi, A.; Ardjmand, M. Anthracite Coal-Derived Activated Carbon as an Effectiveness Adsorbent for Superior Gas Adsorption and CO2 / N2 and CO2 / CH4 Selectivity: Experimental and DFT. J. Environ. Chem. Eng. 2022, 10, 107007. https://doi.org/10.1016/j.jece.2021.107007
https://doi.org/10.1016/j.jece.2021.107007

[10] Liu, G.; Qiu, L.; Deng, H.; Wang, J.; Yao, L.; Deng, L. Ultrahigh Surface Area Carbon Nanosheets Derived from Lotus Leaf with Super Capacities for Capacitive Deionization and Dye Adsorption. Appl. Surf. Sci., 2020, 524, 146485. https://doi.org/10.1016/j.apsusc.2020.146485
https://doi.org/10.1016/j.apsusc.2020.146485

[11] Tiwari, D.; Bhunia, H.; Bajpai, P.K. Adsorption of CO2 on KOH Activated, N-Enriched Carbon Derived from Urea Formaldehyde Resin: Kinetics, Isotherm and Thermodynamic Studies. Appl. Surf. Sci. 2018, 439, 760-771. https://doi.org/10.1016/j.apsusc.2017.12.203
https://doi.org/10.1016/j.apsusc.2017.12.203

[12] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang, R.-S. Preparation of Novel Activated Carbons from H2SO4-Рretreated Corncob Hulls with KOH Activation for Quick Adsorption of Dye and 4-Chlorophenol. J. Environ. Manage. 2011, 92, 708-713. https://doi.org/10.1016/j.jenvman.2010.10.003
https://doi.org/10.1016/j.jenvman.2010.10.003

[13] Bora, M.; Bhattacharjya, D.; Saikia, B.K. Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and Li-S Battery Applications. Energy Fuels 2021, 35, 18285-18307. https://doi.org/10.1021/acs.energyfuels.1c02518
https://doi.org/10.1021/acs.energyfuels.1c02518

[14] So, S.H.; Lee, S.; Mun, J.; Rho, J.; Park, C.R. What Induces the Dense Storage of Hydrogen of Liquid- or Solid-Like Density Levels in Carbon Nanopores with sub-1 nm Diameters? Carbon 2023, 204, 594-600. https://doi.org/10.1016/j.carbon.2022.12.057
https://doi.org/10.1016/j.carbon.2022.12.057

[15] Kumar, K.V; Preuss, K.; Titirici, M.-M.; Rodríguez-Reinoso, F. Nanoporous Materials for the Onboard Storage of Natural Gas. Chem. Rev. 2017, 117, 1796-1825. https://doi.org/10.1021/acs.chemrev.6b00505
https://doi.org/10.1021/acs.chemrev.6b00505

[16] Malini, K.; Selvakumar, D.; Kumar, N.S. Activated Carbon from Biomass: Preparation, Factors Improving Basicity and Surface Properties for Enhanced CO2 Capture Capacity - A Review. J. CO2 Util. 2023, 67, 102318. https://doi.org/10.1016/j.jcou.2022.102318
https://doi.org/10.1016/j.jcou.2022.102318

[17] Zhao, С.; Ge, L.; Mai, L.; Li, X.; Chen, S.; Li, Q.; Li, S.; Yao, L.; Wang, Y.; Xu, C. Review on Coal-Based Activated Carbon: Preparation, Modification, Application, Regeneration, and Perspectives. Energy Fuels 2023, 37, 11622-11642. https://doi.org/10.1021/acs.energyfuels.3c01866
https://doi.org/10.1021/acs.energyfuels.3c01866

[18] Kucherenko, V.A.; Shendrik, T.G.; Tamarkina, Yu.V.; Mysyk, R.D., Nanoporosity Development in the Thermal-Shock KOH Activation of Brown Coal. Carbon 2010, 48, 4556-4558. https://doi.org/10.1016/j.carbon.2010.07.027
https://doi.org/10.1016/j.carbon.2010.07.027

[19] Jagiello, J.; Olivier, J.P. 2D-NLDFT Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation. Carbon 2013, 55, 70-80. https://doi.org/10.1016/j.carbon.2012.12.011
https://doi.org/10.1016/j.carbon.2012.12.011

[20] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069. https://doi.org/10.1515/pac-2014-1117
https://doi.org/10.1515/pac-2014-1117

[21] Таmarkina, Yu.V.; Anishchenko, V.M.; Red'ko, A.M.; Kucherenko, V.O. Aktyvovane luhom vykopne vugill'ya. Mikroporysta struktura ta zdatnist' adsorbuvaty fenol'ni spoluky. Khimiya, Phisyka i Tekhnologiya Poverkhni. 2022, 13, 111-124. https://doi.org/10.15407/hftp13.01.111
https://doi.org/10.15407/hftp13.01.111

[22] Redko, A.V.; Таmarkina, Yu.V.; Redko, A.M.; Frolova, І.B.; Kucherenko, V.O. Spriamovanist' zmin porystoi struktury i adsorbtsiinoi zdatnosti pry topokhimichnomu okysneni aktyvovanoho luhom vykopnoho vugill'ya. Pytannya Khimii Khim. Tekhnol. 2023, 2, 127-136.

[23] Revellame, E.D.; Fortela, D.L.; Sharp, W.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order And Pseudo-Second Order Rate Laws: A Review. Cleaner Eng. Technol. 2020, 1, 100032. https://doi.org/10.1016/j.clet.2020.100032
https://doi.org/10.1016/j.clet.2020.100032

[24] Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation. Solving Methods and Applications. Chemosphere 2022, 309, 136732. https://doi.org/10.1016/j.chemosphere.2022.136732
https://doi.org/10.1016/j.chemosphere.2022.136732

[25] Al-Ghouti, M.A.; Da'ana, D.A. Guidelines for the use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
https://doi.org/10.1016/j.jhazmat.2020.122383

[26] Kucherenko, V.O.; Tamarkina, Yu.V.; Popov, A.F. Luzhna actyvatsiya z teplovym udarom - novyi sposib otrymannya nanoporuvatyh vygletsevyh materialiv. Dopovidi Natsional'noi Akademii Nauk Ukrayiny 2016, 12, 74-81.

https://doi.org/10.15407/dopovidi2016.12.074
https://doi.org/10.15407/dopovidi2016.12.074

[27] Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 nanometer. Science 2006. 313, 1760-1763. https://doi.org/10.1126/science.1132195
https://doi.org/10.1126/science.1132195

[28] Jiang, Y.; Chen, J.; Zeng, Q.; Zou, Z.; Li, J.; Zeng, L.; Sun, W.; Li, C.M. Facile Method to Produce Sub-1 nm Pore-Rich Carbon from Biomass Wastes for High Performance Supercapacitors. Colloid Interface Sci. 2022, 612, 213-222. https://doi.org/10.1016/j.jcis.2021.12.144
https://doi.org/10.1016/j.jcis.2021.12.144

[29] Guerrera, J.V.; Burrow, J.N.; Eichler, J.E.; Rahman, M.Z.; Namireddy, M.V.; Friedman, K.A.; Coffman, S.S.; Calabro, D.C.; Mullins, C.B. Evaluation of Two Potassium-Based Activation Agents for the Production of Oxygen- and Nitrogen-Doped Porous Carbons. Energy Fuels 2020, 34, 6101-6112. https://doi.org/10.1021/acs.energyfuels.0c00427
https://doi.org/10.1021/acs.energyfuels.0c00427

[30] Zhang, Y.; Peng, J.; Feng, G.; Presser, V. Hydration Shell Energy Barrier Differences of Sub-Nanometer Carbon Pores Enable Ion Sieving and Selective Ion Removal. Chem. Eng. J. 2021, 419, 129438. https://doi.org/10.1016/j.cej.2021.129438
https://doi.org/10.1016/j.cej.2021.129438

[31] Deditius, A.; Ela, W.P.; Wiśniewski, M.; Gauden, P.A.; Terzyk, A.P.; Furmaniak, S.; Włoch, J.; Kaneko, K.; Neimark, A.V. Super-Sieving Effect in Phenol Adsorption from Aqueous Solutions on Nanoporous Carbon Beads. Carbon 2018, 135, 12-20. https://doi.org/10.1016/j.carbon.2018.03.063
https://doi.org/10.1016/j.carbon.2018.03.063

[32] Chen, C.; Geng, X.; Huang, W. Adsorption of 4-Chlorophenol and Aniline by Nanosized Activated Carbons. Chem. Eng. J. 2017, 327, 941-952. https://doi.org/10.1016/j.cej.2017.06.183
https://doi.org/10.1016/j.cej.2017.06.183

[33] Ahmed, M.J.; Theydan, S.K. Adsorption of p-Chlorophenol onto Microporous Activated Carbon from Albizia Lebbeck Seed Pods by One-Step Microwave Assisted Activation. J. Anal. Appl. Pyrolysis 2013, 100, 253-260. https://doi.org/10.1016/j.jaap.2013.01.008
https://doi.org/10.1016/j.jaap.2013.01.008

[34] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang, R.-S. Preparation of Activated Carbons from Unburnt Coal in Bottom Ash with KOH Activation for Liquid-Phase Adsorption. J. Environ. Manage. 2010, 91, 1097-1102. https://doi.org/10.1016/j.jenvman.2009.12.011
https://doi.org/10.1016/j.jenvman.2009.12.011

[35] Jasri, K.; Abdulhameed, A. S.; Jawad, A. H.; Al Othman, Z. A.; Yousef, T. A.; Al Duaij, O. K. Mesoporous Activated Carbon Produced from Mixed Wastes of Oil Palm Frond and Palm Kernel Shell Using Microwave Radiation-Assisted K2CO3 Activation for Methylene Blue Dye Removal: Optimization by Response Surface Methodology. Diamond Relat. Mater. 2023, 131, 109581. https://doi.org/10.1016/j.diamond.2022.109581
https://doi.org/10.1016/j.diamond.2022.109581

[36] Dao, M. U.; Le, H. S.; Hoang, H. Y.; Tran, V. A.; Doan, V. D.; Le, T. T. N.; Sirotkin, A. Natural Core-Shell Structure Activated Carbon Beads Derived from Litsea glutinosa Seeds for Removal of Methylene Blue: Facile Preparation, Characterization, and Adsorption Properties. Environ. Res. 2021, 198, 110481. https://doi.org/10.1016/j.envres.2020.110481
https://doi.org/10.1016/j.envres.2020.110481

[37] Mbarki, F.; Selmi, T.; Kesraoui, A.; Seffen, M. Low-Cost Activated Carbon Preparation from Corn stigmata Fibers Chemically Activated Using H3PO4, ZnCl2 and KOH: Study of Methylene Blue Adsorption, Stochastic Isotherm and Fractal Kinetic. Ind. Crops Prod. 2022, 178, 114546. https://doi.org/10.1016/j.indcrop.2022.114546
https://doi.org/10.1016/j.indcrop.2022.114546

[38] Li, L.; Wu, M.; Song, C.; Liu, L.; Gong, W.; Ding, Y.; Yao, J. Efficient Removal of Cationic Dyes via Activated Carbon with Ultrahigh Specific Surface Derived from Vinasse Wastes. Bioresour. Technol. 2021, 322, 124540. https://doi.org/10.1016/j.biortech.2020.124540
https://doi.org/10.1016/j.biortech.2020.124540

[39] Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F; Fan, X. Adsorption of Cd (II) and Pb (II) Ions from Aqueous Solutions Using Mesoporous Activated Carbon Adsorbent: Equilibrium, Kinetics and Characterisation Studies. J. Environ. Chem. Eng. 2017, 5, 679-698. https://doi.org/10.1016/j.jece.2016.12.043
https://doi.org/10.1016/j.jece.2016.12.043

[40] Ghorbani, M.; Seyedin, O.; Aghamohammadhassan, M. Adsorptive Removal of Lead (II) Ion from Water and Wastewater Media Using Carbon-Based Nanomaterials As Unique Sorbents: A Review. J. Environ. Manage. 2020, 254, 109814. https://doi.org/10.1016/j.jenvman.2019.109814
https://doi.org/10.1016/j.jenvman.2019.109814

[41] Jiang, J.; Li, R.; Yang, K.; Li, Y.; Deng, L.; Che, D. Investigation on Pb2+ Adsorption Characteristics by AAEMs-Rich Biochar in Aqueous Solution: Performance and Mechanism. Environ. Res. 2023, 236, 116731. https://doi.org/10.1016/j.envres.2023.116731
https://doi.org/10.1016/j.envres.2023.116731

[42] Mahadevi, A.S.; Sastry, G.N. Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science. Chem. Rev. 2013, 113, 2100-2138.
https://doi.org/10.1021/cr300222d