Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Nanocomposites based on wood flour, ethyl silicate and various nanoparticles

Tamara Tatrishvili1,2, Nikolozi Kvinikadze1,2, Tinatini Bukia2,3
Affiliation: 
1 Ivane Javakhishvili Tbilisi State University, Department of Macromolecular Chemistry. 1 I. Chavchavadze Ave., Tbilisi 0179, Georgia 2 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, 13 University St., Tbilisi 0186, Georgia 3 Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University. 5 Z. Andjzaparidze St., Tbilisi 0186, Georgia tamar.tatrishvili@tsu.ge
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf1.02 MB
Abstract: 
This study provides a comprehensive review of contemporary research and characterization techniques for nanocomposites, along with a thorough analysis of the latest trends in this field. Nanocomposites represent a novel category of material, characterized by the presence of fillers with a nanoscale dimension (graphene 5-25 nm, nano silica 70-90 nm). These materials possess considerable potential for application in diverse industrial sectors, including the automotive, aerospace, construction, electrical, and food packaging domains. There is a substantial interest in the utilization of nanoparticles, such as graphene and nano-silica fillers, in the development of innovative natural composites. The possibility of obtaining environmentally friendly nanocomposite materials with improved properties based on renewable natural raw materials (wood flour), which are easy to obtain and inexpensive, as well as nanoparticles as important fillers in polymer composites, is demonstrated. A range of composite materials has been developed, based on wood flour, with varying dispersion qualities, and with different percentage contents of binder (3-20%), ethyl silicate (40%), as well as nanofillers, including graphene and nano-silica particles. It has been demonstrated that the addition of nanoparticles enhances the mechanical properties and overall performance of the composites. In order to identify the composition of the nanocomposites, a series of Fourier transform infrared spectroscopic studies was carried out. The physical-mechanical properties and water absorption of the compositions were studied, and surface morphology was investigated using the optical microscopic method. In addition, thermogravimetric analysis methods were used to observe the thermal properties of the materials.
References: 

[1] Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science 2006, 314, 1107–1110. https://doi.org/10.1126/science.1130557
[2] Krishnamoorti, R.; Vaia, R. A. Polymer Nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 3252–3256. https://doi.org/10.1002/polb.21319
[3] Huang, T.C.; Yeh, J.M.; Lai, C.Y. Polymer nanocomposite coatings. In Advances in Polymer Nanocomposites; Woodhead Publishing, 2012; pp 605–638. https://doi.org/10.1533/9780857096241.3.605
[4] Conradi, M. Nanosilica-Reinforced Polymer Composites. Mater. Technol. 2013, 47, 285–293.
[5] Moisala, A.; Li, Q.; Kinloch, I. A.; Windle, A. H. Thermal and Electrical Conductivity of Single- and Multi-Walled Carbon Nanotube Epoxy Composites. Compos. Sci. Technol. 2006, 66, 1285–1288. https://doi.org/10.1016/j.compscitech.2005.10.016
[6] Li, H.; Cheng, B.; Gao, W.; Feng, Ch.; Huang, Ch.; Liu, Y.; Lu, P.; Zhao, H. Recent Research Progress and Advanced Applications of Silica/Polymer Nanocomposites. Nanotechnol. Rev. 2022, 11, 2928–2964. https://doi.org/10.1515/ntrev-2022-0484
[7] Huang, J.-C. Carbon Black Filled Conducting Polymers and Polymer Blends. Adv. Polym. Technol. 2002, 21, 299–313. https://doi.org/10.1002/adv.10025
[8] Moniruzzaman, M.; Winey, K. I. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2006, 39, 5194–5205. https://doi.org/10.1021/ma060733p
[9] Okamoto, M. Polymer/Clay Nanocomposites. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Stevenson Ranch, CA, 2004; pp 791–843. https://doi.org/10.5772/14464
[10] Zafar, M.; Imran, M.S.; Iqbal, I.; Azeem, M.; Chaudhary, S.; Ahmad, S.; Kim, W.Y. Graphene-Based Polymer Nanocomposites for Energy Applications: Recent Advancements and Future Prospects. Results Phys. 2024, 60, 107655. https://doi.org/10.1016/j.rinp.2024.107655
[11] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807
[12] Mukbaniani O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325
[13] Tatrishvili, T.; Mukbaniani, O.; Kvinikadze, N.; Chikhladze, Sh. Eco-Friendly Bamboo-Based Composites. Chem. Chem. Technol. 2024, 18, 44–56. https://doi.org/10.23939/chcht18.01.044
[14] Mukbaniani, O.; Aneli, J.; Tatrishvili, T. Composite Materials on the Basis of Sawdust: An Experimental Approach. In Biocomposites- Environmental and Biomedical Applications; Mukbaniani, O.; Tatrishvili, T.; Rawat, N.K.; Haghi, A.K., Eds.; Apple Academic Press, 2023, pp 3–68. E-Book ISBN: 9781003408468, Hard ISBN: 9781774913697.
[15] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3—Process Technological Aspects and Application of Products. Int. J. Coal Sci. Technol. 2019, 6, 63–73. https://doi.org/10.1007/s40789-018-0228-z
[16] Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, Io.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711–718. https://doi.org/10.23939/chcht17.04.711
[17] Tatrshvili, T.; Mukbaniani, O.; Kvinikadze, N.; Bukia, T.; Pirtskheliani, N.; Chikhladze, Sh. Wood Flour Composites: Obtaining and Research. Chem. Chem. Technol. 2024, 18, 567–579. https://doi.org/10.23939/chcht18.04.567
[18] Tatrshvili, T.; Mukbaniani, O.; Kvinikadze, N.; Chikhladze, Sh.; Bukia, T.; Petriashvili, G.; Pirtskheliani, N.; Makharadze, T. Novel Composites Based on a Natural Raw Material and Silylated Polystyrene. Chem. Chem. Technol. 2024, 18, 580–591. https://doi.org/10.23939/chcht18.04.580
[19] Ellis, W. D.; O’Dell, J.L. Surface Morphology of PECVD Fluorocarbon Thin Films from Hexafluoropropylene Oxide, 1,1,2,2-Tetrafluoroethane and Difluoromethane. J. Appl. Polym. Sci. 1999, 73, 2493–2505. https://doi.org/10.1021/cm000499w
[20] Patil, Y.P.; Gajre, B.; Dusane, D.; Chavan, S.; Mishra, S. Effect of Maleic Anhydride Treatment on Steam and Water Absorption of Wood Polymer Composites Prepared from Wheat Straw, Cane Bagasse, and Teak Wood Sawdust Using Novolac as Matrix. J. Appl. Polym. Sci. 2000, 77, 2963–2967. https://doi.org/10.1002/1097-4628(20000923)77:13<2963::AID-APP20>3.0.CO;2-0
[21] Irvine, G.M. The Significance of the Glass Transition of Lignin in Thermomechanical Pulping. Wood Sci. Technol. 1985, 19, 139–149. https://doi.org/10.1007/BF00353074
[22] Petriashvili, G.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Chubinidze, M. Light-Stimulated Lowering of Glucose Concentration in A Dextrose Solution Mediated by Merocyanine Molecules. Mater. Tehnol. 2023, 57, 119–124. https://doi.org/0.17222/mit.2022.639
[23] Brostow, W.; Lobland, H.E. Hagg. Materials: Introduction and Applications; John Wiley & Sons, 2017. ISBN: 978-1-119-28100-9
[24] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I., Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
[25] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758
[26] Ravindran, P.; Manisekar, K.; Vinoth Kumar, S.; Rathika, P. Investigation of Microstructure and Mechanical Properties of Aluminum Hybrid Nano-Composites with the Additions of Solid Lubricant. Mater. Des. 2013, 51, 448–456. https://doi.org/10.1016/j.matdes.2013.04.015
[27] Petriashvili, G.; Sulaberidze, T.; Tavkhelidze, D.; Janikashvili, M.; Ponjavidze, N.; Chanishvili, A.; Chubinidze, K.; Tatrishvili, T.; Makharadze, T.; Kalandia, E.; et al. Cholesteric Liquid Crystal Mirror-Based Smart Window Controlled with Ambient Temperature. Chem. Chem. Technol. 2024, 18, 401–408. https://doi.org/10.23939/chcht18.03.401
[28] Papava, G.; Chitrekashvili, I.; Tatrishvili, T.; Gurgenishvili, M.; Archvadze, K.; Dokhturishvili, N.; Gavashelidze, E.; Gelashvili, N.; Liparteliani, R. Synthesis and Investigation of Properties of Epoxy-Novolac Copolymers Based on Polycyclic Bisphenols of Norbornane Type. Chem. Chem. Technol. 2024, 18, 546–557. https://doi.org/10.23939/chcht18.04.546
[29] Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, seventh ed.; John Wiley & Sons: New York, 2007. ISBN-13: 9781119321590
[30] Papava, G. Sh.; Chitrekashvili, I. A.; Gurgenishvili, M. B.; Gavashelidze, E. A.; Gelashvili, N. S.; Khotenashvili, N. S. Thermo- and Heat-Resistant Polymers Based on Diglycidyl Ethers of Bisphenols with Cyclic Substituents. Oxid. Commun. 2023, 46, 644–654.
[31] Papava, G. Sh.; Dokhturishvili, N. S.; Chitrekashvili, I. A.; Archvadze, K. T.; Liparteliani, R.G.; Tabukashvili, Z. Sh. Dependence of the Thermal Properties of Epoxy Polymers on the Structure of the Hardener. Oxid. Commun. 2023, 46, 655–665.
[32] Abramowitch, S.; Easley, D. Introduction to Classical Mechanics. In Biomechanics of the female pelvic floor ; Academic Press., 2016; pp. 89–107.
[33] Tatrishvili, T.; Mukbaniani, O. Cyclic Silicon Organic Copolymers: Synthesis and Investigation. A Review. Chem. Chem. Technol. 2024, 18, 131–142. https://doi.org/10.23939/chcht18.02.131
[34] Tatrishvili, T.; Abraham, A.R.; Haghi, A.K. Environmental Technology and Sustainability: Physical, Chemical and Biological Technologies for Environmental Protection; Apple Academic Press., 2024.
[35] Chia, C.H.; Tatrishvili, T.; Abraham, A.R.; Haghi, A.K. Mechanics and Physics of Porous Materials: Novel Processing Technologies and Emerging Applications; Apple Academic Press., 2024.
[36] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
[37] Sreekala, M. S.; Kumaran, M. G.; Thomas, S. Water Sorption in oil Palm Fiber Reinforced Phenol Formaldehyde Composites. Composites, Part A 2002, 33, 763–777. https://doi.org/10.1016/S1359-835X(02)00032-5
[38] Maslinda, A. B.; Abdul Majid, M. S.; Ridzuan, M. J. M.; Afendi, M.; Gibson, A. G. Effect of Water Absorption on the Mechanical Properties of Hybrid Interwoven Cellulosic-Cellulosic Fibre Reinforced Epoxy Composites. Compos. Struct. 2017, 167, 227–237. https://doi.org/10.1016/j.compstruct.2017.02.023
[39] Almansour, F. A.; Dhakal, H. N.; Zhang, Z. Y. Effect of Water Absorption on Mode I Interlaminar Fracture Toughness of Flax/Basalt Reinforced Vinyl Ester Hybrid Composites. Compos. Struct. 2017, 168, 813–825. https://doi.org/10.1016/j.compstruct.2017.02.081
[40] Sanjeevi, S.; Shanmugam, V.; Kumar, S.; Ganesan V.; Sas, G.; Johnson, D.J.; Shanmugam, M.; Ayyanar, A.; Naresh, K.; Neisiany, R.E.; et al. Effects of Water Absorption on the Mechanical Properties of Hybrid Natural Fibre/Phenol Formaldehyde Composites. Sci Rep 2021, 11, 13385. https://doi.org/10.1038/s41598-021-92457-9
[41] Monteiro, S.N.; Calado, V.; Rodriguez, R.J.S.; Margem, F.M. Thermogravimetric Behavior of Natural Fibers Reinforced Polymer Composites - An Overview. Mater. Sci. Eng. A 2012, 557, 17–28. https://doi.org/10.1016/j.msea.2012.05.109
[42] Nurazzi, N. M.; Asyraf, M. R. M.; Rayung, M.; Norrrahim, M. N. F.; Shazleen, S. S.; Rani, M. S. A.; Shafi ,A. R.; Aisyah, H. A.; Radzi, M. H. M.; Sabaruddin, F. A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. https://doi.org/10.3390/polym13162710