Cholesteric Liquid Crystal Mirror-Based Smart Window Controlled with Ambient Temperature
Attachment | Size |
---|---|
full_text.pdf | 672.98 KB |
[1] Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonization. e-Prime - Advances in Electrical Engineering, Electronics and Energy 2021, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
https://doi.org/10.1016/j.prime.2021.100002
[2] Niu, Y.; Zhou Y.; Du, D.; Ouyang, X.; Yang, Z.; Lan, W.; Fan, F.; Zhao, S.; Liu, Y.; Chen, S.; Li, J.; and Q. Xu. Energy Saving and Energy Generation Smart Window with Active Control and Antifreezing Functions. Adv. Sci. 2022, 9, 2105184. https://doi.org/10.1002/advs.202105184
https://doi.org/10.1002/advs.202105184
[3] Ariosto, T.; Memari, A. M.; Solnosky, R. L. Development of Designer Aids for Energy Efficient Residential Window Retrofit Solutions. Sustainable Energy Technol. Assess. 2019, 33, 1-13. https://doi.org/10.1016/j.seta.2019.02.007
https://doi.org/10.1016/j.seta.2019.02.007
[4] Amirkhani, S.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Impact of Low-E Window Films on Energy Consumption and CO2 Emissions of an Existing UK Hotel Building. Sustainability 2019, 11, 4265. https://doi.org/10.3390/su11164265
https://doi.org/10.3390/su11164265
[5] Moghaddam, S.A.; Mattsson, M.; Ameen, A.; Akander, J.; Gameiro Da Silva, M.; Simões, N. Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate. Energies 2021, 14, 1-28. https://doi.10.3390/en14227584
https://doi.org/10.3390/en14227584
[6] Lampert, C.M. Large-Area Smart Glass and Integrated Photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489- 499. https://doi.org/10.1016/S0927-0248(02)00259-3
https://doi.org/10.1016/S0927-0248(02)00259-3
[7] Georg, A.; George, A.; Graf, W.; Wittwer, V. Switchable Windows with Tungsten Oxide. Vacuum 2008, 82, 730-735. https://doi.10.1016/j.vacuum.2007.10.020
https://doi.org/10.1016/j.vacuum.2007.10.020
[8] Badour, Y.; Jubera, V.; Andron, I.; Frayret, C.; Gaudon, M. Photochromism in Inorganic Crystallised Compounds. Opt. Mater. 2021, 12, 100110. https://doi.org/10.1016/j.omx.2021.100110
https://doi.org/10.1016/j.omx.2021.100110
[9] Zhang, J.; Zou, Q.; and Tian, H. Photochromic Materials: More Than Meets the Eye. Adv. Mater. 2013, 25, 378-399. https://doi.org/10.1002/adma.201201521
https://doi.org/10.1002/adma.201201521
[10] Zou, Y.; Yi, T.; Xiao, Sh.; Li, F.; Li, Ch.; Gao, X.; Wu, J.; Yu, M.; Huang, Ch. Amphiphilic Diarylethene as a Photoswitchable Probe for Imaging Living Cells. J. Am. Chem. Soc. 2008, 130, 15751-1575. https://doi.org/10.1021/ja8043163
https://doi.org/10.1021/ja8043163
[11] Jaik, Th. G.; Ciubini, B.; Frascella F.; and Jonas, U. Thermal Response and Thermochromism of Methyl Red-Based Copolymer Systems - Coupled Responsiveness in Critical Solution Behaviour and Optical Absorption Properties. Polym. Chem. 2022, 13, 1186-1214. https://doi.org/10.1039/D1PY01361K
https://doi.org/10.1039/D1PY01361K
[12] Somani, P. R.; Radhakrishnan, S. Electrochromic Materials and Devices: Present and Future. Mater. Chem. Phys. 2002, 77, 117-133. https://doi.org/10.1016/S0254-0584(01)00575-2
https://doi.org/10.1016/S0254-0584(01)00575-2
[13] Han, M.; Cho, Ch. H.; Jang, H.; Kim, E. Black-to-Transparent Electrochromic Capacitive Windows Based on Conjugated Polymers. J. Mater. Chem. A 2021, 9, 16016-16027. https://doi.org/10.1039/D1TA02996G
https://doi.org/10.1039/D1TA02996G
[14] Bouas-Laurent, H.; Durr, H. Organic Photochromism. Pure Appl. Chem. 2001, 73, 639-665. http://dx.doi.org/10.1351/pac200173040639
https://doi.org/10.1351/pac200173040639
[15] Wiedemann, U.; Alt, W.; Meschede, D. Switching Photochromic Molecules Adsorbed on Optical Microfibers. Opt. Express 2012, 20, 12710-12720. https://doi.org/10.1364/OE.20.012710
https://doi.org/10.1364/OE.20.012710
[16] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506. https://doi.org/10.23939/chcht16.04.499
https://doi.org/10.23939/chcht16.04.499
[17] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377-386. https://doi.org/10.23939/chcht16.03.377
https://doi.org/10.23939/chcht16.03.377
[18] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35-44. https://doi.org/10.23939/chcht17.01.035
https://doi.org/10.23939/chcht17.01.035
[19] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili; G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325-338. https://doi.org/10.23939/chcht17.02.325
https://doi.org/10.23939/chcht17.02.325
[20] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili; G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807-819. https://doi.org/10.23939/chcht17.04.807
https://doi.org/10.23939/chcht17.04.807
[21] Huang, Y.; Zhou, Y.; Doyle, C.; Wu, Sh.-Ts. Tuning the Photonic Band Gap in Cholesteric Liquid Crystals by Temperature Dependent Dopant Solubility. Opt. Express 2006, 14, 1236-1242. https://doi.org/10.1364/OE.14.001236
https://doi.org/10.1364/OE.14.001236
[22] Ritacco, T.; Aceti, D. M.; Domenico, G. De.; Giocondo, M.; Mazzulla, A.; Cipparrone, G.; and Pagliusi, P. Tuning Cholesteric Selective Reflection In Situ Upon Two-Photon Polymerization Enables Structural Multicolor 4D Microfabrication. Adv. Optical Mater. 2022, 10, 1-9. https://doi.org/10.1002/adom.202101526
https://doi.org/10.1002/adom.202101526
[23] Lu, H. B.; Xie, X. Y.; Xing, J.; Xu, C.; Wu, Z. Q.; Zhang, G. B.; Lv, G. Q.; Qiu, L. Z. Wavelength-Tuning and Band-Broadening of a Cholesteric Liquid Crystal Induced by a Cyclic Chiral Azobenzene Compound. Opt. Mater. Express 2016, 6, 3145-3158. https://doi.org/10.1364/OME.6.003145
https://doi.org/10.1364/OME.6.003145
[24] Xiang, J.; Li, Y.; Li, Q.; Paterson, D. A.; Storey, J. M. D.; Imrie, C. T.; Lavrentovich, O. D. Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics. Adv. Mater. 2015, 27, 3014-3018. https://doi.org/10.1002/adma.201500340
https://doi.org/10.1002/adma.201500340
[25] Jing, T. Selective Reflection of Cholesteric Liquid Crystals. Science Insights 2022, 40, 515-517. https://doi.org/10.15354/si.22.re051
https://doi.org/10.15354/si.22.re051
[26] Saadaoui, L.; Petriashvili, G.; De Santo, M. P.; Hamdi, R.; Othman, T.; Barberi, R. Electrically Controllable Multicolor Cholesteric Laser. Opt. Express 2015, 23, 22922-22927. https://doi.org/10.1364/OE.23.022922
https://doi.org/10.1364/OE.23.022922
[27] Chilaya, G.; Chanishvili, A.; Petriashvili, G.; Barberi, R.; Bartolino, R.; Cipparrone, G.; Mazzulla, A.; Shibaev, P. V. Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes. Adv. Mater. 2007, 19, 565-568. https://doi.org/10.1002/adma.200600353
https://doi.org/10.1002/adma.200600353
[28] Qu, R.; Li, G. Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications. Biosensors 2022, 12, 205. https://doi.org/10.3390/bios12040205
https://doi.org/10.3390/bios12040205
[29] Petriashvili, G.; Japaridze, K.; Devadze, L.; Zurabishvili, C.; Sepashvili, N.; Ponjavidze, N.; De Santo, M. P.; Matranga, M. A.; Hamdi, R.; Ciuchi, F.; et al. Paper Like Cholesteric Interferential Mirror. Opt. Express 2013, 21, 20821-20830. https://doi.org/10.1364/OE.21.020821
https://doi.org/10.1364/OE.21.020821
[30] Chen, Ch.-W.; Brigeman, A. N.; Ho, Ts.-J.; Khoo, I.C h. Normally Transparent Smart Window Based on Electrically Induced Instability in Dielectrically Negative Cholesteric Liquid Crystal. Optical Material Express 2018, 8, 691-697. https://doi.org/10.1364/OME.8.000691
https://doi.org/10.1364/OME.8.000691
[31] Tseng, H.-Yi.; Chang, Li-M.; Lin, K.-W.; Li, Ch.-Ch.; Lin, W.-H.; Wang, Ch.-T.; Lin, Ch.-W.; Liu Sh.-H.; Lin, Ts.-H. Smart Window with Active-Passive Hybrid Control. Materials 2020, 13, 4137. https://doi.org/10.3390/ma13184137
https://doi.org/10.3390/ma13184137
[32] Shen, W.; Li, G. Recent Progress in Liquid Crystal-Based Smart Windows: Materials, Structures, and Design. Laser Photonics Rev. 2023, 17, 2200207. https://doi.10.1002/lpor.202200207
https://doi.org/10.1002/lpor.202200207
[33] Zhang, R.; Zhang, Z.; Han, J.; Yang, L.; Li, J.; Song, Z.; Wang, T.; Zhu, J. Advanced Liquid Crystal-Based Switchable Optical Devices for Light Protection Applications: Principles and Strategies. Light Sci Appl 2023, 12, 11. https://doi.org/10.1038/s41377-022-01032-y
https://doi.org/10.1038/s41377-022-01032-y
[34] An, C-H.; Choi, T-H.; Oh, S-W. Energy-Efficient Liquid Crystal Smart Window with a Clear View. Crystals 2023, 13, 1464. https://doi.org/10.3390/cryst13101464
https://doi.org/10.3390/cryst13101464