Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

The Problem of Road Bitumen Technological Aging and Ways to Solve It: A Review

Myroslava Donchenko1, Oleg Grynyshyn1, Yuriy Prysiazhnyi1, Serhiy Pyshyev1, Ananiy Kohut1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., 79013 Lviv, Ukraine myroslava.i.donchenko@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.284
AttachmentSize
PDF icon full_text.pdf309.87 KB
Abstract: 
This paper discusses the main features of technological aging of bitumen, in particular, the mechanisms and transformations that accompany this process. The main laboratory methods for modeling the above processes are considered. It is described how the technical essence of the methods has changed from the first developments to the present. A number of compounds that can be used as inhibitors of technological aging, including antioxidants and plasticizers, as well as some “natural” substances that have these properties, are presented.
References: 

[1] Enkorr Home Page. https://enkorr.ua/uk/news/Mirovomu_sprosu_na_neft_ugrozhayut_elektrokari... (accessed 2023-12-30).

[2] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54-62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
https://doi.org/10.32434/0321-4095-2023-148-3-54-62

[3] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
https://doi.org/10.23939/chcht15.03.438

[4] Donchenko, M.; Grynyshyn, O.; Demchuk Yu.; Topilnytskyy P.; Turba Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681-687. https://doi.org/10.23939/chcht17.03.681
https://doi.org/10.23939/chcht17.03.681

[5] Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the Bitumen Ageing Phenomenon: A Review. Constr. Build. Mater. 2018, 192, 593-609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
https://doi.org/10.1016/j.conbuildmat.2018.10.169

[6] Bell, C.A. Summary Report on Aging on Asphalt-Aggregate Systems; Oregon State University, Corvallis, 1989.

[7] Lu, X.; Talon, Y.; Redelius, P. Aging of Bituminous Binders - Laboratory Tests and Field Data. In Proceedings of the 4th Euroasphalt and Eurobitumen Congress; European Asphalt Pavement Association: Copenhagen, 2008.

[8] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
https://doi.org/10.23939/chcht15.04.608

[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916-622. https://doi.org/10.23939/chcht17.04.916
https://doi.org/10.23939/chcht17.04.916

[10] Bratychak, M.; Gunka, V. Khimiya nafty ta hazu; Publishing House of Lviv Polytechnic National University: Lviv, 2020.

[11] Petersen, J.C. A Thin Film Accelerated Aging Test for Evaluating Asphalt Oxidative Aging. J. Transp. Res. Board 1989, 58, 220-237.

[12] Zupanick, M.; Baselice, V. Characterizing Asphalt Volatility. J. Transp. Res. Board 1997, 1586, 971223. https://doi.org/10.3141/1586-01
https://doi.org/10.3141/1586-01

[13] Miró, R.; Martínez, A.; Moreno-Navarro, F.; Rubio-Gámez, M. Effect of Ageing and Temperature on the Fatigue Behaviour of Bitumens. Mater. Des. 2015, 86, 129-137. http://dx.doi.org/10.1016/j.matdes.2015.07.076
https://doi.org/10.1016/j.matdes.2015.07.076

[14] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015.
https://doi.org/10.1680/tsbh.58378

[15] Petersen, J. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. In Transportation Research Circular E-C140, 2009.

[16] Santagata, E.; Baglieri, O.; Dalmazzo, D.; Tsantilis, L. Experimental Investigation on the Combined Effects of Physical Hardening and Chemical Ageing on Low Temperature Properties of Bituminous Binders. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. RILEM Bookseries, vol 11; Canestrari, F.; Partl, M., Eds.; Springer: Dordrecht, 2016; pp 631-641. https://doi.org/10.1007/978-94-017-7342-3_51
https://doi.org/10.1007/978-94-017-7342-3_51

[17] Mertens, P. ASTM. Comm. D - 8 Chicago III Meeting, 1960.

[18] Wang, D.; Cannone Falchetto, A.; Poulikakos, L.; Hofko, B.; Porot, L. (2019). RILEM TC 252-CMB report: Rheological modeling of asphalt binder under different short and long-term aging temperatures. Materials and Structures, 2019, 52, 1-12. https://doi.org/10.1617/s11527-019-1371-8
https://doi.org/10.1617/s11527-019-1371-8

[19] Airey, G. D. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. 2003, 4, 165-176. http://dx.doi.org/10.1080/1029843042000198568
https://doi.org/10.1080/1029843042000198568

[20] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688-700. https://doi.org/10.23939/chcht17.03.688
https://doi.org/10.23939/chcht17.03.688

[21] Thomas, K.; Harnsberger, P.; Guffey, F. An Evaluation of Asphalt Ridge (UTHA) Tar Sand Bitumen as a Feedstock for the Production of Asphalt and Turbine Fuels. Fuel sci. technol. int. 1994, 12, 281-302. https://doi.org/10.1080/08843759408916179
https://doi.org/10.1080/08843759408916179

[22] Juristyarini, P.; Davison, R.; Glover, C. Development of an Asphalt Aging Procedure to Assess Long-Term Binder Performance. Pet Sci Technol 2011, 29, 2258-2268. https://doi.org/10.1080/10916461003699192
https://doi.org/10.1080/10916461003699192

[23] Pakter, M.; Bratchun, V.; Stukalov, O.; Bespalov, V.; Dolya, A. Zakonomirnosti tekhnologichnogo starinnya naftovykh dorozhnikh bitumiv ta asfaltobetonnykh sumishey. Suchasne promyslove ta cyvilne budivnyctvo 2014, 10, 225-235.

[24] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and use adhesive promoters to bitumen from the phenolic fraction of coal tar. Int J Adhes Adhes 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
https://doi.org/10.1016/j.ijadhadh.2022.103191

[25] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
https://doi.org/10.3390/coatings12121934

[26] Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and Rheological Properties of Asphalt Binders Containing Various Antiaging Agents. Fuel 2012, 97, 678-684. https://doi.org/10.1016/j.fuel.2012.02.028
https://doi.org/10.1016/j.fuel.2012.02.028

[27] Camargo, I. G. D. N.; Dhia, T. B.; Loulizi, A.; Hofko, B.; Mirwald, J. (2021). Anti-aging additives: Proposed evaluation process based on literature review. Road Mater. Pavement Des. 2021, 22, S134-S153. https://doi.org/10.1080/14680629.2021.1906738
https://doi.org/10.1080/14680629.2021.1906738

[28] Budziński, B.; Ratajczak, M.; Majer, S.; Wilmański, A. Influence of bitumen grade and air voids on low-temperature cracking of asphalt. Case Stud. Constr. Mater. 2023, 19, e02255. https://doi.org/10.1016/j.cscm.2023.e02255
https://doi.org/10.1016/j.cscm.2023.e02255

[29] Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of Oxidization of Crumb Rubber-Modified Asphalt during Short-Term Aging. J. Transp. Res. Board 2015, 2505, 84-91. https://doi.org/10.3141/2505-11
https://doi.org/10.3141/2505-11

[30] Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Comunicación 21. In V Jornada Nacional ASEFMA; ASEFMA, 2010; pp 227-238.

[31] Zeng, G.; Shen, A.; Lyu, Z.; Kang, C.; Cui, H.; Ren, G.; Yue, G. (2023). Research on anti-aging properties of POE/SBS compound-modified asphalt in high-altitude regions. Constr. Build. Mater. 2023, 376, 131060. https://doi.org/10.1016/j.conbuildmat.2023.131060
https://doi.org/10.1016/j.conbuildmat.2023.131060

[32] Yakovlieva, A.; Boichenko, S.; Shkilniuk, I.; Bakhtyn, A.; Kale, U.; Nagy, A. Assessment of influence of anti-icing fluids based on ethylene and propylene glycol on environment and airport infrastructure. Int. J. Sustain. Aviat. 2022, 8, 54-74. https://doi.org/10.1504/IJSA.2022.120613
https://doi.org/10.1504/IJSA.2022.120613

[33] Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-Oxidants' Effect on Bitumen Rheology and Mixes' Mechanical Performance. In Innovative Materials and Design for Sustainable Transportation Infrastructure; Zhao, S.; Liu, J., Zhang, X., Eds.; Fairbanks, Alaska, 2015; pp 8-18. https://doi.org/10.1061/9780784479278.002
https://doi.org/10.1061/9780784479278.002

[34] Martin, K. Laboratory Evaluation of Antioxidants for Bitumen. Proc. Aust. Road Res. Board 1968, 4, 431.

[35] Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of Antioxidant-Enhanced Polymers in Bitumen Rheology and Bituminous Concrete Mixtures Mechanical Performance. Adv. Mater. Sci. Eng. 2015, 2015, 214585. https://doi.org/10.1155/2015/214585
https://doi.org/10.1155/2015/214585

[36] Duan, H.; Kuang, H.; Zhang, H.; Liu, J.; Luo, H.; Cao, J. Investigation on Microstructure and Aging Resistance of Bitumen Modified by Zinc Oxide/Expanded Vermiculite Composite Synthesized with Different Methods. Fuel 2022, 324, 124590. https://doi.org/10.1016/j.fuel.2022.124590
https://doi.org/10.1016/j.fuel.2022.124590

[37] Zhuang, C.; Chen, Y. The effect of nano-SiO2 on concrete properties: a review. Nanotechnol. Rev. 2019, 8, 562-572. https://doi.org/10.1515/ntrev-2019-0050
https://doi.org/10.1515/ntrev-2019-0050

[38] Jin, J.; Tan, Y.; Liu, R.; Zheng, J.; Zhang, J. (2019). Synergy effect of attapulgite, rubber, and diatomite on organic montmorillonite-modified asphalt. J. Mater. Civ. Eng. 2019, 31, 04018388. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002601
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002601

[39] Saleh, T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067
https://doi.org/10.1016/j.eti.2020.101067

[40] Zhang, H.; Luo, H.; Duan, H.; Cao, J. Influence of Zinc Oxide/Expanded Vermiculite Composite on the Rheological and Anti-Aging Properties of Bitumen. Fuel 2022, 315, 123165. https://doi.org/10.1016/j.fuel.2022.123165
https://doi.org/10.1016/j.fuel.2022.123165

[41] Ghanoon, S. A.; Tanzadeh, J.; Mirsepahi, M. Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder. Constr. Build. Mater. 2020, 238, 117592. https://doi.org/10.1016/j.conbuildmat.2019.117592
https://doi.org/10.1016/j.conbuildmat.2019.117592

[42] Fini, E.H.; Hajikarimi, P.; Rahi, M.; Nejad, F.M. Physiochemical, Rheological, and Oxidative Aging Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. J. Mater. Civ. Eng. 2016, 28, 1-9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423

[43] Bonica, C.; Toraldo, E.; Andena, L.; Marano, C.; Mariani, E. The Effects of Fibers on the Performance of Bituminous Mastics for Road Pavements. Compos. Part B Eng. 2016, 95, 76-81. https://doi.org/10.1016/j.compositesb.2016.03.069
https://doi.org/10.1016/j.compositesb.2016.03.069

[44] Farias, L. G. A.; Leitinho, J. L.; Amoni, B. D. C.; Bastos, J. B.; Soares, J. B.; Soares, S. D. A.; de Sant'Ana, H. B. Effects of nanoclay and nanocomposites on bitumen rheological properties. Constr. Build. Mater. 2016, 125, 873-883. https://doi.org/10.1016/j.conbuildmat.2016.08.127
https://doi.org/10.1016/j.conbuildmat.2016.08.127

[45] Kordi, Z.; Shafabakhsh, G. Evaluating Mechanical Properties of Stone Mastic Asphalt Modified with Nano Fe2O3. Constr. Build. Mater. 2017, 134, 530-539. https://doi.org/10.1016/j.conbuildmat.2016.12.202
https://doi.org/10.1016/j.conbuildmat.2016.12.202

[46] Shafabakhsh, G.; Mirabdolazimi, S.M.; Sadeghnejad, M. Evaluation the Effect of Nano-TiO2 on the Rutting and Fatigue Behavior of Asphalt Mixtures. Constr. Build. Mater. 2014, 54, 566-571. https://doi.org/10.1016/j.conbuildmat.2013.12.064
https://doi.org/10.1016/j.conbuildmat.2013.12.064

[47] Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials-A review. Constr. Build. Mater. 2017, 143, 633-648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
https://doi.org/10.1016/j.conbuildmat.2017.03.158

[48] Yarahmadi, A.M.; Shafabakhsh, G.; Asakereh, A. Laboratory Investigation of the Effect of Nano-CaCO3 on Rutting and Fatigue of Stone Mastic Asphalt Mixtures. Constr. Build. Mater. 2022, 317, 126127. https://doi.org/10.1016/j.conbuildmat.2021.126127
https://doi.org/10.1016/j.conbuildmat.2021.126127

[49] Xiao, N.; Zhang, Y.; Xia, H.; Lei, Y.; Luo, Y. Effects of Organic Nano Calcium Carbonate on Aging Resistance of Bio-Asphalt. Adv. Mater. Sci. Eng. 2022, 2022, 6043030. https://doi.org/10.1155/2022/6043030
https://doi.org/10.1155/2022/6043030

[50] Caputo, P.; Porto, M.; Angelico, R.; Loise, V.; Calandra, P.; Oliviero Rossi, C. Bitumen and Asphalt Concrete Modified by Nanometer-Sized Particles: Basic Concepts, the State of the Art and Future Perspectives of the Nanoscale Approach. Adv. Colloid Interface Sci. 2020, 285, 102283. https://doi.org/10.1016/j.cis.2020.102283
https://doi.org/10.1016/j.cis.2020.102283

[51] Mousavi, M.; Fini, E. Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS). ACS Sustain. Chem. Eng. 2020, 8, 3231-3240. https://doi.org/10.1021/acssuschemeng.9b06741
https://doi.org/10.1021/acssuschemeng.9b06741

[52] Li, Z.; Guo, T.; Chen, Y.; Liu, Q.; Chen, Y. The Properties of Nano-CaCO3/Nano-ZnO/SBR Composite-Modified Asphalt. Nanotechnol. Rev. 2021, 10, 1253-1265. https://doi.org/10.1515/ntrev-2021-0082
https://doi.org/10.1515/ntrev-2021-0082

[53] Kim, J.H.; Kang, M.; Kim, Y.J.; Won, J.; Park, N.; Kang, Y.S. Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles. Chem. Commun. 2004, 14, 1662-1663, https://doi.org/10.1039/B405215C
https://doi.org/10.1039/b405215c

[54] Kim, K.; Kim, H.; Kim, H.J. Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment. Polymers 2021, 13, 2691. https://doi.org/10.3390/polym13162691
https://doi.org/10.3390/polym13162691

[55] Zheng, Z.; Song, Y.; Wang, X.; Zheng, Q. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses. J. Rheol. 2015, 59, 971-993. https://doi.org/10.1122/1.4922010
https://doi.org/10.1122/1.4922010

[56] Zhou, S.; Li, S.; Yan, C. Influence of Fumed Silica Nanoparticles on the Rheological and Anti-Aging Properties of Bitumen. Constr. Build. Mater. 2023, 397, 132388. https://doi.org/10.1016/j.conbuildmat.2023.132388
https://doi.org/10.1016/j.conbuildmat.2023.132388

[57] Su, Y.; Tang, S.; Cai, M.; Nie, Y.; Hu, B.; Wu, S.; Cheng, C. Thermal Oxidative Aging Mechanism of Lignin Modified Bitumen. Constr. Build. Mater. 2023, 363, 129863. https://doi.org/10.1016/j.conbuildmat.2022.129863
https://doi.org/10.1016/j.conbuildmat.2022.129863

[58] Xu, G.; Wang, H.; Zhu, H. Rheological Properties and Anti-Aging Performance of Bitumen Binder Modified with Wood Lignin. Constr. Build. Mater. 2017, 151, 801-808. https://doi.org/10.1016/j.conbuildmat.2017.06.151
https://doi.org/10.1016/j.conbuildmat.2017.06.151

[59] Xie, S.; Li, Q.; Karki, P.; Zhou, F.; Yuan, J.S. Lignin as Renewable and Superior Bitumen Binder Modifier. ACS Sustain. Chem. Eng. 2017, 5, 2817-2823. https://doi.org/10.1021/acssuschemeng.6b03064
https://doi.org/10.1021/acssuschemeng.6b03064

[60] Zhao, C.; Xie, S.; Pu, Y.; Zhang, R.; Huang, F.; Ragauskas, A.J.; Yuan, J.S. Synergistic Enzymatic and Microbial Lignin Conversion. Green Chem. 2016, 18, 1306-1312. https://doi.org/10.1039/C5GC01955A
https://doi.org/10.1039/C5GC01955A

[61] Malinowski, S.; Woszuk, A.; Franus, W. Modern Two-Component Modifiers Inhibiting the Aging Process of Road Bitumen. Constr. Build. Mater. 2023, 409, 133838. https://doi.org/10.1016/j.conbuildmat.2023.133838
https://doi.org/10.1016/j.conbuildmat.2023.133838

[62] Lizardi-Mendoza, J.; Argüelles Monal, W.M.; Goycoolea Valencia, F.M. Chemical Characteristics and Functional Properties of Chitosan. In Chitosan in the Preservation of Agricultural Commodities; Elsevier Inc., 2016; pp 3-31. https://doi.org/10.1016/B978-0-12-802735-6.00001-X
https://doi.org/10.1016/B978-0-12-802735-6.00001-X

[63] Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A potential Biopolymer for Wound Management. Int. J. Biol. Macromol. 2017, 102, 380-383. https://doi.org/10.1016/j.ijbiomac.2017.04.047
https://doi.org/10.1016/j.ijbiomac.2017.04.047

[64] Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an Environment Friendly Biomaterial - A Review on Recent Modifications and Applications. Int. J. Biol. Macromol. 2020, 150, 1072-1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113
https://doi.org/10.1016/j.ijbiomac.2019.10.113

[65] Hamed, I.; Ozogul, F.; Regenstein, J.M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40-50. https://doi.org/10.1016/j.tifs.2015.11.007
https://doi.org/10.1016/j.tifs.2015.11.007

[66] Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314-1337. https://doi.org/10.1007/s12010-016-2286-2
https://doi.org/10.1007/s12010-016-2286-2

[67] Leceta, I.; Etxabide, A.; Cabezudo, S.; De La Caba, K.; Guerrero, P. Bio-Based Films Prepared with by-Products and Wastes: Environmental Assessment. J. Clean. Prod. 2014, 64, 218-227. https://doi.org/10.1016/j.jclepro.2013.07.054
https://doi.org/10.1016/j.jclepro.2013.07.054

[68] Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A Review on the Synthesis of Graft Copolymers of Chitosan and their Potential Applications. Int. J. Biol. Macromol. 2020, 163, 2097-2112. https://doi.org/10.1016/j.ijbiomac.2020.09.060
https://doi.org/10.1016/j.ijbiomac.2020.09.060

[69] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
https://doi.org/10.1007/978-3-030-57340-9_12

[70] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
https://doi.org/10.23939/chcht16.01.142

[71] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
https://doi.org/10.3390/ma15051774

[72] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
https://doi.org/10.3390/ma15165693

[73] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, Kh.; Vytrykush N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
https://doi.org/10.3390/coatings13071183

[74] Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539-544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
https://doi.org/10.4028/www.scientific.net/AMM.567.539

[75] Tan, X.; He, Y.; Zhang, M.; Zhang, J. Research on low temperature properties and physical hardening effect of asphalt components. Case Stud. Constr. Mater. 2023, 19, e02484. https://doi.org/10.1016/j.cscm.2023.e02484
https://doi.org/10.1016/j.cscm.2023.e02484

[76] Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D'Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1405. https://doi.org/10.3390/app8081405
https://doi.org/10.3390/app8081405

[77] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211 [78] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701-710. https://doi.org/10.23939/chcht17.03.701
https://doi.org/10.23939/chcht17.03.701

[79] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal 2021, 63, 953-962.

[80] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357-364. https://doi.org/10.23939/chcht17.02.357
https://doi.org/10.23939/chcht17.02.357

[81] Prysiazhnyi, Y.; Grynyshyn, O.; Pyshyev, S.; Korchak, B.; Bratychak, M. Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements. Chem. Chem. Technol. 2023, 17, 574-591. https://doi.org/10.23939/chcht17.03.574
https://doi.org/10.23939/chcht17.03.574

[82] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Demchuk, Y.; Vytrykush, N. Modeling of Coke Distribution in a Dry Quenching Zone.

ACS Omega 2023, 8, 19464-19473. https://doi.org/10.1021/acsomega.3c00747
https://doi.org/10.1021/acsomega.3c00747

[83] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
https://doi.org/10.1016/j.matchemphys.2023.128778

[84] Zhang, C.; Dong, H.; Wang, T.; Li, Y.; Xu, S.; Zheng, Y.; Que, Y.; Chen, Y. Effect of Different Organic Layered Double Hydroxides on the Anti-Aging Property of Bitumen. Constr. Build. Mater. 2023, 367, 130316. https://doi.org/10.1016/j.conbuildmat.2023.130316
https://doi.org/10.1016/j.conbuildmat.2023.130316

[85] Celauro, C.; Teresi, R.; Dintcheva, N.T. Evaluation of Anti-Aging Effect in Biochar-Modified Bitumen. Sustainability 2023, 15, 10583. https://doi.org/10.3390/su151310583
https://doi.org/10.3390/su151310583

[86] Pyrig, Ya.; Galkin, A.; Oksak, S. Porivnyannya vlastyvostei bitumnyh vyazhuchyh pislya starinnya riznymy metodamy. Budivnytstvo ta tsyvilʹna inzheneriya 2022, 26, 92-107. https://doi.org/10.36100/dorogimosti2022.26.092
https://doi.org/10.36100/dorogimosti2022.26.092

[87] EN 12607-2:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 2. TFOT method, 2018.

[88] Hveem, F.N.; Zube, E.; Skog, J. Proposed new tests and specifications for paving grade asphalts. Association of Asphalt Paving Technologists Proceedings 1963, 32, 247-327.

[89] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.

[90] Hamad, R. Tekhnycheskye trebovanyya i metody ispytanyya bytumnykh vyazhushchykh po prohramme SHRP. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu 2017, 79, 66-72.

[91] Bahia, H.; Hislop, W.; Zhai, H.; Rangel, A. Classification of Asphalt Binders into Simple and Complex Binders. Association of Asphalt Paving Technologists Proceedings 1998, 67, 1-41.

[92] Y Hu, Y.; Si, W.; Kang, X.; Xue, Y.; Wang, H.; Parry, T.; Airey, G. D. State of the Art: Multiscale Evaluation of Bitumen Ageing Behaviour. Fuel 2022, 326, 125045. https://doi.org/10.1016/j.fuel.2022.125045