Characteristics and Applications of Waste Tire Pyrolysis Products: A Review
Attachment | Size |
---|---|
full_text.pdf | 477.22 KB |
[1] Hita, I.; Arabiourrutia, M.; Olazar, M.; Bilbao, J.; Arandes, J.M.; Castaño, P. Opportunities and Barriers for Producing High Quality Fuels from the Pyrolysis of Scrap Tires. Renew. Sust. Energ. Rev. 2016, 56, 745-759. https://doi.org/10.1016/j.rser.2015.11.081
https://doi.org/10.1016/j.rser.2015.11.081
[2] Song, W.; Zhou, J.; Li, Y.; Li, Sh.; Yang, J. Utilization of Waste Tire Powder for Gaseous Fuel Generation via CO2 Gasification Using Waste Heat in Converter Vaporization Cooling Flue. Renew. Energ. 2021, 173, 283-296. https://doi.org/10.1016/j.renene.2021.03.090
https://doi.org/10.1016/j.renene.2021.03.090
[3] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003
https://doi.org/10.1016/j.sajce.2022.12.003
[4] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239-246. https://doi.org/10.23939/chcht15.02.239
https://doi.org/10.23939/chcht15.02.239
[5] Korchak, B.; Hrynyshyn, O.; Chervinskyy, T.; Polyuzhin, I. Application of Vacuum Distillation for the Used Mineral Oils Recycling. Chem. Chem. Technol. 2018, 12, 365-371. https://doi.org/10.23939/chcht12.03.365
https://doi.org/10.23939/chcht12.03.365
[6] Grigorov, A.; Tulskii, H.; Chyrkina, M.; Bondarenko, S.; Vavreniuk, S. Complex Approach to the Processing of Polymer Waste into Fuel, Lubricant Materials and Construction Materials for the Oil Refining Industry. Pet. Coal 2023, 65, 1016-1022. http://repositsc.nuczu.edu.ua/handle/123456789/18918
[7] Grigorov, A.; Ponomarenko, V.; Slepuzhnikov, E.; Artemev, S.; Bondarenko, O.; Ilinskyi, O.; Bryhada, O. Сompatibility of Recycling Plastic Lubricants. Pet. Coal 2023, 65, 481-486. http://repositsc.nuczu.edu.ua/handle/123456789/18175
[8] Grigorov, A.; Sinkevich, I.; Ponomarenko, N.; Bondarenko, O.; Usachov, D.; Matukhno, V.; Shevchuk, O. Recycling of Polymer Waste into Plastic Lubricants. Pet. Coal 2022, 64, 709-713. http://repositsc.nuczu.edu.ua/handle/123456789/16152
[9] Hrynyshyn, K.; Chervinskyy, T.; Helzhynskyy, I.; Skorokhoda, V. Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis. Chem. Chem. Technol. 2023, 17, 923-928. https://doi.org/10.23939/chcht17.04.923
https://doi.org/10.23939/chcht17.04.923
[10] Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159-163. https://doi.org/10.23939/chcht16.01.159
https://doi.org/10.23939/chcht16.01.159
[11] Recycling of tires. https://ecological.investments/shini/ (accessed 2021-01-10)
[12] Karagöz, M.; Ağbulut, Ü.; Sarıdemir, S. Waste to Energy: Production of Waste Tire Pyrolysis Oil and Comprehensive Analysis of its Usability in Diesel Engines. Fuel 2020, 275, 117844. https://doi.org/10.1016/j.fuel.2020.117844
https://doi.org/10.1016/j.fuel.2020.117844
[13] Formela, K. Sustainable Development of Waste Tires Recycling Technologies - Recent Advances, Challenges and Future Trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209-222. https://doi.org/10.1016/j.aiepr.2021.06.004
https://doi.org/10.1016/j.aiepr.2021.06.004
[14] The number of cars in the EU increased to 560 per 1,000 people. https://www.fixygen.ua/news/20240125/kilkist-avtomobiliv.html (accessed 2024-01-25)
[15] Will it be legal to transfer used car tires to the contractor, if his main activity is the production of other rubber products? https://ukraine-oss.com/chy-zakonnoyu-bude-peredacha-pidpryyemstvu-vykon... (accessed 2023-06-30)
[16] Zhang, X.; Tang, J.; Chen, J. Behavior of Sulfur During Pyrolysis of Waste Tires: A Critical Review. J. Energy Inst. 2022, 102, 302-314. https://doi.org/10.1016/j.joei.2022.04.006
https://doi.org/10.1016/j.joei.2022.04.006
[17] Valentini, F.; Pegoretti, A. End-of-Life Options Of Tires. A Review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203-213. https://doi.org/10.1016/j.aiepr.2022.08.006
https://doi.org/10.1016/j.aiepr.2022.08.006
[18] Where to hand over old tires for recycling: disposal of used tires. https://ascania-shina.com/ua/articles/kuda-sdat-starye-shiny-na-pererabotku (accessed 2022-07-24)
[19] Palos, R.; Gutiérrez, A.; Vela, F.J.; Olazar, M.; Arandes, J.M.; Bilbao, J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy & Fuels 2021, 35, 3529-3557. https://doi.org/10.1021/acs.energyfuels.0c03918
https://doi.org/10.1021/acs.energyfuels.0c03918
[20] Lin, Y.R.; Teng, H. Mesoporous Carbons from Waste Tire Char and their Application in Wastewater Discoloration. Micropor. Mesopor. Mat. 2002, 54, 167-174. https://doi.org/10.1016/S1387-1811(02)00380-3
https://doi.org/10.1016/S1387-1811(02)00380-3
[21] Xu, J.; Yu, J.; Xu, J.; Sun, C.; He, W.; Huang, J.; Li, G. High-Value Utilization of Waste Tires: A Review with Focus on Modified Carbon Black from Pyrolysis. Sci. Total Environ. 2020, 742, 140235. https://doi.org/10.1016/j.scitotenv.2020.140235
https://doi.org/10.1016/j.scitotenv.2020.140235
[22] Bockstal, L; Berchem, T; Schmetz, Q; Richel, A. Devulcanisation and Reclaiming of Tires and Rubber by Physical and Chemical Processes: A Review. J. Cleaner. Prod. 2019, 236, 117574 https://doi.org/10.1016/j.jclepro.2019.07.049
https://doi.org/10.1016/j.jclepro.2019.07.049
[23] Nakanishi, Y; Mita, K; Yamamoto, K; Ichino, K.; Takenaka, M. Effects of Mixing Process on Spatial Distribution and Coexistence of Sulfur and Zinc in Vulcanized EPDM Rubber. Polymer 2021, 218, 123486 https://doi.org/10.1016/j.polymer.2021.123486
https://doi.org/10.1016/j.polymer.2021.123486
[24] Singh, R.K; Ruj, B; Jana, A; Mondal, S.; Jana, B.; Sadhukhan, A.K.; Gupta, P. Pyrolysis of Three Different Categories of Automotive Tyre Wastes: Product Yield Analysis and Characterization. J. Anal. Appl. Pyrolysis 2018, 135, 379-389 https://doi.org/10.1016/j.jaap.2018.08.011
https://doi.org/10.1016/j.jaap.2018.08.011
[25] Han, J.; Li, W.; Liu, D.; Qin, L.; Chen, W.; Xing, F. Pyrolysis Characteristic and Mechanism of Waste Tyre: A Thermogravimetry-Mass Spectrometry Analysis. J. Anal. Appl. Pyrolysis 2018, 129, 1-5. https://doi.org/10.1016/j.jaap.2017.12.016
https://doi.org/10.1016/j.jaap.2017.12.016
[26] Nagurskyy, A.; Grynyshyn, O.; Khlibyshyn, Y.; Korchak, B. Use of Rubber Crumb Obtained from Waste Car Tires for the Production of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing. Chem. Chem. Technol. 2023, 17, 674-680. https://doi.org/10.23939/chcht17.03.674
https://doi.org/10.23939/chcht17.03.674
[27] Feng, Z.; Rao, W.; Chen, Ch.; Tian, B.; Li, X.; Li, P.; Guo, Q. Performance Evaluation of Bitumen Modified with Pyrolysis Carbon Black Made from Waste Tires. Constr. Build. Mater. 2016, 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
https://doi.org/10.1016/j.conbuildmat.2016.02.143
[28] Williams, P.T. Pyrolysis of Waste Tires: A Review. Waste. Manag. 2013, 33, 1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003
https://doi.org/10.1016/j.wasman.2013.05.003
[29] Martinez, J.D.; Puy, N.; Murillo, R.; Garcia, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis - A Review. Renew. Sustain. Energy Rev. 2013, 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
https://doi.org/10.1016/j.rser.2013.02.038
[30] Oboirien, B.O.; North B.C. A Review of Waste Tyre Gasification. J. Environ. Chem. Eng. 2017, 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057
https://doi.org/10.1016/j.jece.2017.09.057
[31] Xi-Shan, T.; Wei-Hua, Z.; Dong-Qing, L.I. Combustion Characteristics of the Waste Tire by Thermo-Gravimetric Analysis. J. Nanjing Univ. Technol. 2006, 28, 85-88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
[32] Kim, J.K.; Lee, S.H. New Technology of Crumb Rubber Compounding for Recycling of Waste Tires. J. Appl. Polym. Sci. 2000, 78, 1573-1577. https://doi.org/10.1002/1097-4628(20001121)78:8%3C1573::AID-APP150%3E3.0.CO;2-P
https://doi.org/10.1002/1097-4628(20001121)78:8<1573::AID-APP150>3.0.CO;2-P
[33] Llompart, M.; Sanchez-Prado, L.; Lamas, J.P.; Garcia-Jares, C.; Roca, E.; Dagnac, T. Hazardous Organic Chemicals in Rubber Recycled Tire Playgrounds and Pavers. Chemosphere 2013, 90, 423-431. https://doi.org/10.1016/j.chemosphere.2012.07.053
https://doi.org/10.1016/j.chemosphere.2012.07.053
[34] Kardnkeyan, S.; Sathiskumar, C.; Moorthy, R.S. Effect of Process Parameters on Tire Pyrolysis: A Review. J. Sci. Ind. Res. 2012, 71, 309-315. http://nopr.niscpr.res.in/handle/123456789/13986
[35] Simic, V; Dabic-Ostojic, S. Interval-Parameter Chance-Constrained Programming Model for Uncertainty-Based Decision Making in Tire Retreading Industry. J. Cleaner. Prod. 2017, 167, 1490-1498. https://doi.org/10.1016/j.jclepro.2016.10.122
https://doi.org/10.1016/j.jclepro.2016.10.122
[36] Wang, F; Gao, N; Quan, C. Progress on Pyrolysis Technology of Waste Tire and Upgrade and Recycle Utilization of Carbon Black Product. J. Chem. Eng. 2019, 70, 2864-2875. https://doi.org/10.11949/0438-1157.20190198
[37] Uyumaz, A.; Aydogan, B.; Solmaz, H.; Yılmaz, E.; Hopa, D.Y.; Bahtli, T.A.; Solmaz, Ö.; Aksoy, F. Production of waste tyre oil and experimental investigation on combustion, engine performance and exhaust emissions. J. Energy. Inst. 2019, 92, 1406-1418. https://doi.org/10.1016/j.joei.2018.09.001
https://doi.org/10.1016/j.joei.2018.09.001
[38] Narani, S.S.; Abbaspour, M.; Mir Mohammad Hosseini, S.M.; Aflaki, E.; Moghadas Nejad, F. Sustainable Reuse of Waste Tire Textile Fibers (WTTFs) as Reinforcement Materials for Expansive Soils: With a Special Focus on Landfill Liners/Covers. J. Cleaner. Prod. 2020, 247, 119151. https://doi.org/10.1016/j.jclepro.2019.119151
https://doi.org/10.1016/j.jclepro.2019.119151
[39] Li, W.; Huang, C.F.; Li, D.P.; Huo, P.; Wang, M.; Han, L.; Chen, G.; Li, H.; Li, X.; Wang, Y.; et al. Derived oil production by catalytic pyrolysis of scrap tires. Chin. J. Catal. 2016, 37, 526-532. https://doi.org/10.1016/S1872-2067(15)60998-6
https://doi.org/10.1016/S1872-2067(15)60998-6
[40] Yaqoob, H.; Teoh, Y.H.; Sher, F.; Jamil, M.A.; Murtaza, D.; Al Qubeissi, M.; UI Hassan, M.; Mujtaba, M.A. Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries. Sustainability 2021, 13, 3214. https://doi.org/10.3390/su13063214
https://doi.org/10.3390/su13063214
[41] Wang, Y.P.; Dai, L.L.; Fan, L.L.; Duan, D.; Liu, Y.; Ruan, R.; Yu, Z.; Liu, Y.; Jiang, L. Microwave-Assisted Catalytic Fast co-Pyrolysis of Bamboo Sawdust and Waste Tire for Bio-Oil Production. J. Anal. Appl. Pyrolysis 2017, 123, 224-248. https://doi.org/10.1016/j.jaap.2016.11.025
https://doi.org/10.1016/j.jaap.2016.11.025
[42] Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste Tyre Valorization by Catalytic Pyrolysis - A Review. Renew. Sustain. Energy Rev. 2020, 129, 109932. https://doi.org/10.1016/j.rser.2020.109932
https://doi.org/10.1016/j.rser.2020.109932
[43] Luo, S.Y.; Feng, Y. The Production of Fuel Oil and Combustible Gas by Catalytic Pyrolysis of Waste Tire Using Waste Heat of Blast-Furnace Slag. Energy. Convers. Manage. 2017, 136, 27-35. https://doi.org/10.1016/j.enconman.2016.12.076
https://doi.org/10.1016/j.enconman.2016.12.076
[44] Lewandowski, W.M.; Januszewicz, K.; Kosakowski, W. Efficiency and Proportions of Waste Tyre Pyrolysis Products Depending on the Reactor Type - A Review. J. Anal. Appl. Pyrolysis 2019, 140, 25-53. https://doi.org/10.1016/j.jaap.2019.03.018
https://doi.org/10.1016/j.jaap.2019.03.018
[45] Quek, A.; Balasubramanian, R. Liquefaction of Waste Tires by Pyrolysis for Oil and Chemicals - A Review. J. Anal. Appl. Pyrolysis 2013, 101, 1-16. https://doi.org/10.1016/j.jaap.2013.02.016
https://doi.org/10.1016/j.jaap.2013.02.016
[46] Sathiskumar, C.; Karthikeyan, S. Recycling of Waste Tires and its Energy Storage Application of by-Products: A Review. Sustain. Mater. Technol. 2019, 22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125
https://doi.org/10.1016/j.susmat.2019.e00125
[47] Al-Salem, S.M.; Karam, H.J.; Al-Qassimi, M.M. Pyro-gas Analysis of Fixed Bed Reactor End of Life Tires (ELTs) Pyrolysis: A Comparative Study. J. Environ. Manage. 2022, 320, 115852. https://doi.org/10.1016/j.jenvman.2022.115852
https://doi.org/10.1016/j.jenvman.2022.115852
[48] Czajczyńska, D.; Krzyżyńska, R.; Ghazal, H.; Jouhara, H. Experimental Investigation of Waste Tires Pyrolysis Gas Desulfurization through Absorption in Alkanolamines Solutions. Int. J. Hydrogen. Energ. 2022, 52, 1006-1014. https://doi.org/10.1016/j.ijhydene.2022.09.275
https://doi.org/10.1016/j.ijhydene.2022.09.275
[49] Abdallah, R.; Juaidi, A.; Assad, M.; Salameh, T.; Manzano-Agugliaro, F. Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study. Energies 2020, 13, 1817. https://doi.org/10.3390/en13071817
https://doi.org/10.3390/en13071817
[50] Aylón, E.; Murillo, R.; Fernández-Colino, A.; Aranda, A.; García, T.; Callén, M. S.; Mastral, A.M. Emissions from the Combustion of Gas-Phase Products at Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2007, 79, 210-214. https://doi.org/10.3390/en13071817
https://doi.org/10.3390/en13071817
[51] Mandal, B.; Bandyopadhyay, S.S. Simultaneous Absorption of CO2 and H2S into Aqueous Blends of N-methyldiethanolamine and Diethanolamine. Environ. Sci. Technol. 2006, 40, 6076-6084. https://doi.org/10.1021/es0606475
https://doi.org/10.1021/es0606475
[52] European Council DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union. L334. 2016. 10.3000/17252555.L_2010.334.eng (accessed 2010-12-17)
[53] Arabiourrutia, M.; Lopez, G.; Elordi, G.; Olazar, M.; Aguado, R.; Bilbao, J. Characterization of the Liquid Obtained in Tyre Pyrolysis in a Conical Spouted Bed Reactor. Int. J. Chem. React. Eng. 2007, 2007, 5. https://doi.org/10.2202/1542-6580.1570
https://doi.org/10.2202/1542-6580.1570
[54] Ding, K.; Zhong, Z.; Zhang, B.; Wang, J.; Min, A.; Ruan, R. Catalytic Pyrolysis of Waste Tire to Produce Valuable Aromatic Hydrocarbons: an Analytical Py-GC/MS Study. J. Anal. Appl. Pyrol. 2016, 122, 55-63. https://doi.org/10.1016/j.jaap.2016.10.023
https://doi.org/10.1016/j.jaap.2016.10.023
[55] Ahoor, A.H.; Zandi-Atashbar, N. Fuel Production Based on Catalytic Pyrolysis of Waste Tires as an Optimized Model. Energ. Convers. Manage. 2014, 87, 653-669. https://doi.org/10.1016/j.enconman.2014.07.033
https://doi.org/10.1016/j.enconman.2014.07.033
[56] Jantaraksa, N.; Prasassarakich, P.; Reubroycharoen, P.; Hinchiranan, N. Cleaner Alternative Liquid Fuels Derived from the Hydrodesulfurization of Waste Tire Pyrolysis Oil. Energ. Convers. Manage. 2015, 95, 424-434. https://doi.org/10.1016/j.enconman.2015.02.003
https://doi.org/10.1016/j.enconman.2015.02.003
[57] Laresgoiti, M.F.; Caballero, B.M.; de Marco, I.; Torres, A.; Cabrero, M.A.; Chomón, M. J. Characterization of the Liquid Products Obtained in Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2004, 71, 917-934. https://doi.org/10.1016/j.jaap.2003.12.003
https://doi.org/10.1016/j.jaap.2003.12.003
[58] Pakdel, H.; Pantea, D.M.; Roy, C. Production of dl-limonene by Vacuum Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 57, 91-107. https://doi.org/10.1016/S0165-2370(00)00136-4
https://doi.org/10.1016/S0165-2370(00)00136-4
[59] Conesa, J.A.; Font, R.; Marcilla, A. Gas from the Pyrolysis of Scrap Tires in a Fluidized Bed Reactor. Energy Fuels 1996, 10, 134-140. https://doi.org/10.1021/ef950152t
https://doi.org/10.1021/ef950152t
[60] Januszewicz, K.; Kazimierski, P.; Kosakowski, W.; Lewandowski, W.M. Waste Tires Pyrolysis for Obtaining Limonene. Materials 2020, 13, 1359. https://doi.org/10.3390/ma13061359
https://doi.org/10.3390/ma13061359
[61] Williams, P.T.; Brindle, A.J. Temperature Selective Condensation of Tyre Pyrolysis Oils to Maximise the Recovery of Single Ring Aromatic Compounds. Fuel 2003, 82, 1023-1031. https://doi.org/10.1016/S0016-2361(03)00016-4
https://doi.org/10.1016/S0016-2361(03)00016-4
[62] Martín, M.T.; Aguirre, J.L.; Baena-González, J.; González, S.; Pérez-Aparicio, R.; Saiz-Rodríguez, L. Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires. Energies 2022, 15, 2128. https://doi.org/10.3390/en15062128
https://doi.org/10.3390/en15062128
[63] Campuzano, F.; Gani, A.; Jameel, A.; Zhang, W.; Emwas, A.; Agudelo, F.; Daniel, J.; Sarathy, S.M. On the Distillation of Waste Tire Pyrolysis Oil: A Structural Characterization of the Derived Fractions. Fuel 2021, 290, 120041. https://doi.org/10.1016/j.fuel.2020.120041
https://doi.org/10.1016/j.fuel.2020.120041
[64] Karagöz, M. Investigation of Performance and Emission Characteristics of an CI Engine Fuelled with Diesel-Waste Tire Oil-Butanol Blends. Fuel 2020, 282, 118872. https://doi.org/10.1016/j.fuel.2020.118872
https://doi.org/10.1016/j.fuel.2020.118872
[65] Umeki, E.R.; de Oliveira, C.F.; Torres, R.B.; dos Santos, R.G. Physico-Chemistry Properties of Fuel Blends Composed of Diesel and Tire Pyrolysis Oil. Fuel 2016, 185, 236-242. https://doi.org/10.1016/j.fuel.2016.07.092
https://doi.org/10.1016/j.fuel.2016.07.092
[66] Suchocki, T.; Witanowski, Ł.; Lampart, P.; Kazimierski, P.; Januszewicz, K.; Gawron, B. Experimental Investigation of Performance and Emission Characteristics of a Miniature Gas Turbine Supplied by Blends of Kerosene and Waste Tyre Pyrolysis Oil. Energy 2021, 215, 119125. https://doi.org/10.1016/j.energy.2020.119125
https://doi.org/10.1016/j.energy.2020.119125
[67] Yaqoob, H.; Heng, Y.; Ahmad, M.; Gulzar, M. Potential of Tire Pyrolysis Oil as an Alternate Fuel for Diesel Engines: A Review. J. Energy Inst. 2021, 96, 205-221. https://doi.org/10.1016/j.joei.2021.03.002
https://doi.org/10.1016/j.joei.2021.03.002
[68] Arya, S.; Sharma, A.; Rawat, M.; Agrawal, A. Materials Today: Proceedings Tyre Pyrolysis Oil as an Alternative Fuel: A Review. Mater. Today Proc. 2020, 28, 2481-2484. https://doi.org/10.1016/j.matpr.2020.04.797
https://doi.org/10.1016/j.matpr.2020.04.797
[69] Rodriguez, I.; Laresgoiti, M.F.; Cabrero, M.A.; Torres, A.; Chomon, M.J.; Caballero, B. Pyrolysis of Scrap Tires. Fuel. Process. Technol. 2001, 72, 9-22. https://doi.org/10.1016/S0378-3820(01)00174-6
https://doi.org/10.1016/S0378-3820(01)00174-6
[70] Williams, P.T.; Besler, S.; Taylor, D.T.; Bottrill, R.P. Pyrolysis of Automotive Tyre Waste. Journal of the Institute of Energy 1995, 68, 11-21.
[71] Williams, P.T.; Besler, S. Pyrolysis-Thermogravimetric Analysis of Tires and Tyre Components. Fuel 1995, 74, 1277-1283. https://doi.org/10.1016/0016-2361(95)00083-H
https://doi.org/10.1016/0016-2361(95)00083-H
[72] González, J.F.; Encinar, J.M.; Canito, J.L.; Rodrı́guez, J.J. Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study. J. Anal. Appl. Pyrol. 2001, 58, 667-683. https://doi.org/10.1016/S0165-2370(00)00201-1
https://doi.org/10.1016/S0165-2370(00)00201-1
[73] López, G.; Olazar, M.; Aguado, R.; Bilbao, J. Continuous Pyrolysis of Waste Tires in a Conical Spouted Bed Reactor. Fuel 2010, 89, 1946-1952. https://doi.org/10.1016/j.fuel.2010.03.029
https://doi.org/10.1016/j.fuel.2010.03.029
[74] Chaala, A.; Roy, C. Production of Coke from Scrap Tire Vacuum Pyrolysis Oil. Fuel. Process. Technol. 1996, 46, 227-239. https://doi.org/10.1016/0378-3820(95)00065-8
https://doi.org/10.1016/0378-3820(95)00065-8
[75] Cunliffe, A.M.; Williams, P.T. Composition of Oils Derived from the Batch Pyrolysis of Tires. J. Anal. Appl. Pyrol. 1998, 44, 131-152. https://doi.org/10.1016/S0165-2370(97)00085-5
https://doi.org/10.1016/S0165-2370(97)00085-5
[76] Roy, C.; Chaala, A.; Darmstadt, H. The Vacuum Pyrolysis of Used Tires. End-Uses for Oil and Carbon Black Products. J. Anal. Appl. Pyrol. 1999, 51, 201-221. https://doi.org/10.1016/S0165-2370(99)00017-0
https://doi.org/10.1016/S0165-2370(99)00017-0
[77] Li, S.Q.; Yao, Q.; Chi, Y.; Yan, J.H.; Cen, K.F. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Ind. Eng. Chem. Res. 2004, 43, 5133-5145. https://doi.org/10.1021/ie030115m
https://doi.org/10.1021/ie030115m
[78] Dıez, C.; Martınez, O.; Calvo, L. F.; Cara, J.; Morán, A. Pyrolysis of Tires. Influence of the Final Temperature of the Process on Emissions and the Calorific Value of the Products Recovered. Waste Manage. 2004, 24, 463-469. https://doi.org/10.1016/j.wasman.2003.11.006
https://doi.org/10.1016/j.wasman.2003.11.006
[79] Ucar, S.; Karagoz, S.; Ozkan, A.R.; Yanik, J. Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis. Fuel 2005, 84, 1884-1892. https://doi.org/10.1016/j.fuel.2005.04.002
https://doi.org/10.1016/j.fuel.2005.04.002
[80] Aylón, E.; Fernández-Colino, A.; Navarro, M.V.; Murillo, R.; García, T.; Mastral, A.M. Waste Tire Pyrolysis: Comparison between Fixed Bed Reactor and Moving Bed Reactor. Ind. Eng. Chem. Res. 2008, 47, 4029-4033. https://doi.org/10.1021/ie071573o
https://doi.org/10.1021/ie071573o
[81] López, F.A.; Centeno, T.A.; Alguacil, F.J.; Lobato, B. Distillation of Granulated Scrap Tires in a Pilot Plant. J. Hazard. Mater. 2011, 190, 285-292. https://doi.org/10.1016/j.jhazmat.2011.03.039
https://doi.org/10.1016/j.jhazmat.2011.03.039
[82] Benallal, B.; Roy, C.; Pakdel, H.; Chabot, S.; Poirie, M.A. Characterization of Pyrolytic Light Naphtha from Vacuum Pyrolysis of Used Tires Comparison with Petroleum Naphtha. Fuel 1995, 74, 1589-1594. https://doi.org/10.1016/0016-2361(95)00165-2
https://doi.org/10.1016/0016-2361(95)00165-2
[83] Fernández, A.M.; Barriocanal, C.; Alvarez, R. Pyrolysis of a Waste from the Grinding of Scrap Tires. J. Hazard. Mater. 2012, 203, 236-243. https://doi.org/10.1016/j.jhazmat.2011.12.014
https://doi.org/10.1016/j.jhazmat.2011.12.014
[84] Roy, C.; Darmstadt, H.; Benallal, B.; Amen-Chen, C. Characterization of Naphtha and Carbon Black Obtained by Vacuum Pyrolysis of Polyisoprene Rubber. Fuel process. Technol. 1997, 50, 87-103. https://doi.org/10.1016/S0378-3820(96)01044-2
https://doi.org/10.1016/S0378-3820(96)01044-2
[85] Zhang, X.; Wang, T.; Ma, L.; Chang, J. Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Manage. 2008, 28, 2301-2310. https://doi.org/10.1016/j.wasman.2007.10.009
https://doi.org/10.1016/j.wasman.2007.10.009
[86] Williams, P.T.; Besler, S.; Taylor, D.T. Pyrolysis of Scrap Automotive Tires: The Influence of Temperature and Heating Rate on Product Composition. Fuel 1990, 69, 1474-1482. https://doi.org/10.1016/0016-2361(90)90193-T
https://doi.org/10.1016/0016-2361(90)90193-T
[87] Williams, P.T.; Taylor, D.T. Aromatization of Tyre Pyrolysis Oil to Yield Polycyclic Aromatic Hydrocarbons. Fuel 1993, 72, 1469-1474. https://doi.org/10.1016/0016-2361(93)90002-J
https://doi.org/10.1016/0016-2361(93)90002-J
[88] Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva, K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers from it. J. Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598
https://doi.org/10.1016/j.joei.2024.101598
[89] Cypres, R.; Bettens, B. Production of benzoles and active carbon from waste rubber and plastic materials by means of pyrolysis with simultaneous post-cracking. In Pyrolysis and gasification; Elsevier Applied Science London, UK, 1989; pp. 209-229.
[90] Kwon, E.; Castaldi, M.J. Investigation of Mechanisms of Polycyclic Aromatic Hydrocarbons (PAHs) Initiated from the Thermal Degradation of Styrene Butadiene Rubber (SBR) in N2 Atmosphere. Environ. Sci. Technol. 2008, 42, 2175-2180. https://doi.org/10.1021/es7026532
https://doi.org/10.1021/es7026532
[91] Doğan, O.; Celik, M.B.; Özdalyan, B. The Effect of Tire Derived Fuel/Diesel Fuel Blends Utilization on Diesel Engine Performance and Emissions. Fuel 2012, 95, 340-346. https://doi.org/10.1016/j.fuel.2011.12.033
https://doi.org/10.1016/j.fuel.2011.12.033
[92] Ilkilic, C.; Aydin, H. Fuel Production from Waste Vehicle Tires by Catalytic Pyrolysis and its Application in a Diesel Engine. Fuel Process. Technol. 2011, 92, 1129-1135. https://doi.org/10.1016/j.fuproc.2011.01.009
https://doi.org/10.1016/j.fuproc.2011.01.009
[93] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Performance, Emission and Combustion Studies of a DI Diesel Engine Using Distilled Tires Pyrolysis Oil-Diesel Blends. Fuel Process. Technol. 2008, 89, 152-159. https://doi.org/10.1016/j.fuproc.2007.08.005
https://doi.org/10.1016/j.fuproc.2007.08.005
[94] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. The Use of Tires Pyrolysis Oil in Diesel Engines. Waste Manage. 2008, 28, 2743-2749. https://doi.org/10.1016/j.wasman.2008.03.007
https://doi.org/10.1016/j.wasman.2008.03.007
[95] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Assessment of Pyrolysis Oil as an Energy Source for Diesel Engines. Fuel Process. Technol. 2009, 90, 67-74. https://doi.org/10.1016/j.fuproc.2008.07.017
https://doi.org/10.1016/j.fuproc.2008.07.017
[96] Islam, M.R.; Hiroyuki, H.; Beg, A.R.; Kazunori, T. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels. Journal of Power and Energy Systems. 2008, 2, 1359-1372. https://doi.org/10.1299/jpes.2.1359
https://doi.org/10.1299/jpes.2.1359
[97] Williams, P.T.; Bottrill, R.P.; Cunliffe, A.M. Combustion of Tyre Pyrolysis Oil. Process. Saf. Environ. 1998, 76, 291-301. https://doi.org/10.1205/095758298529650
https://doi.org/10.1205/095758298529650
[98] Islam, M.R.; Haniu, H.; Beg, M.R.A. Liquid Fuels and Chemicals from Pyrolysis of Motorcycle Tire Waste: Product Yields, Compositions and Related Properties. Fuel 2008, 87, 3112-3122. https://doi.org/10.1016/j.fuel.2008.04.036
https://doi.org/10.1016/j.fuel.2008.04.036
[99] Pyshyev, S.V.; Lypko, Yu.V.; Korchak, B.O.; Niavkevych, M.V.; Rudnieva, K.Ye. Investigation of the Extraction Separation of Gasoline Fractions Obtained as a Result of Pyrolysis of Waste Tires. Journal of Coal Chemistry 2023, 6, 28-37. https://doi.org/10.31081/1681-309X-2023-0-6-28-37
https://doi.org/10.31081/1681-309X-2023-0-6-28-37
[100] Heywood, J.B. Internal combustion engine fundamentals; Mc Graw Hill, 1998.
[101] Pulkrabek, W.W. Engineering fundamentals of the internal combustion engine; Prentice Hall: New Jersey, 1997.
[102] Zabaniotou, A.A.; Stavropoulos, G. Pyrolysis of Used Automobile Tires and Residual Char Utilization. J. Anal. Appl. Pyrol. 2003, 70, 711-722. https://doi.org/10.1016/S0165-2370(03)00042-1
https://doi.org/10.1016/S0165-2370(03)00042-1
[103] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Vytrykush, N. Influence of Water on Noncatalytic Oxidative Desulfurization of High-Sulfur Straight-Run Oil Fractions. ACS omega 2022, 7, 26495-26503. https://doi.org/10.1021/acsomega.2c02527
https://doi.org/10.1021/acsomega.2c02527
[104] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B. B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414-422. https://doi.org/10.23939/chcht15.03.414
https://doi.org/10.23939/chcht15.03.414
[105] ISO 8217:2017 https://www.iso.org/standard/64247.html (accessed 2017-03-01)
[106] DSTU 4058-2001 https://online.budstandart.com/ua/catalog/doc-page?id_doc=54025 (accessed 2002-07-01)
[107] Roy, C.; Chaala, A.; Darmstadt, H.; Caumia, B.; Pakdel, H.; Yang, J. Conversion of used tires to carbon black and oil by pyrolysis. In Rubber recycling; CRC Press Taylor & Francis Group Florida, 2005; pp. 458-499.
https://doi.org/10.1201/9780203499337.ch11
[108] Miguel, G.S.; Fowler, G.D.; Sollars, C.J. Pyrolysis of Tire Rubber: Porosity and Adsorption Characteristics of the Pyrolytic Chars. Ind. Eng. Chem. Res. 1998, 37, 2430-2435. https://doi.org/10.1021/ie970728x
https://doi.org/10.1021/ie970728x
[109] Berrueco, C.; Esperanza, E.; Mastral, F.J.; Ceamanos, J.; García-Bacaicoa, P. Pyrolysis of Waste Tires in an Atmospheric Static-Bed Batch Reactor: Analysis of the Gases Obtained. J. Anal. Appl. Pyrol. 2005, 74, 245-253. https://doi.org/10.1016/j.jaap.2004.10.007
https://doi.org/10.1016/j.jaap.2004.10.007
[110] Helleur, R.; Popovic, N.; Ikura, M.; Stanciulescu, M.; Liu, D. Characterization and Potential Applications of Pyrolytic Char from Ablative Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 58, 813-824. https://doi.org/10.1016/S0165-2370(00)00207-2
https://doi.org/10.1016/S0165-2370(00)00207-2
[111] Senneca, O.; Salatino, P.; Chirone, R. A Fast Heating-Rate Thermogravimetric Study of the Pyrolysis of Scrap Tires. Fuel 1999, 78, 1575-1581. https://doi.org/10.1016/S0016-2361(99)00087-3
https://doi.org/10.1016/S0016-2361(99)00087-3
[112] Cunliffe, A.M.; Williams, P.T. Influence of Process Conditions on the Rate of Activation of Chars Derived from Pyrolysis of Used Tires. Energ. Fuel 1999, 13, 166-175. https://doi.org/10.1021/ef9801524
https://doi.org/10.1021/ef9801524
[113] Murillo, R.; Navarro, M.V.; López, J.M.; Garcıa, T.; Callén, M.S.; Aylón, E.; Mastral, A.M. Activation of Pyrolytic Tire Char with CO2: Kinetic Study. J. Anal. Appl. Pyrol. 2004, 71, 945-957. https://doi.org/10.1016/j.jaap.2003.12.005
https://doi.org/10.1016/j.jaap.2003.12.005
[114] Murillo, R.; Navarro, M.V.; López, J.M.; Aylón, E.; Callén, M.S.; García, T.; Mastral, A.M. Kinetic Model Comparison for Waste Tire Char Reaction with CO2. Ind. Eng. Chem. Res. 2004, 43, 7768-7773. https://doi.org/10.1021/ie040026p
https://doi.org/10.1021/ie040026p
[115] Mastral, A.M.; Alvarez, R.; Callén, M.S.; Clemente, C.; Murillo, R. Characterization of Chars from Coal−Tire Copyrolysis. Ind. Eng. Chem. Res. 1999, 38, 2856-2860. https://doi.org/10.1021/ie9805032
https://doi.org/10.1021/ie9805032
[116] Chaala, A.; Darmstadt, H.; Roy, C. Acid-Base Method for the Demineralization of Pyrolytic Carbon Black. Fuel. Process. Technol. 1996, 46, 1-15. https://doi.org/10.1016/0378-3820(95)00044-5
https://doi.org/10.1016/0378-3820(95)00044-5
[117] Sebok, E.B.; Taylor, R.L. Carbon blacks. In Encyclopedia of Materials: Science and Technology; Elsevier Ltd., 2001; pp 902-906. https://doi.org/10.1016/B0-08-043152-6/00173-X
https://doi.org/10.1016/B0-08-043152-6/00173-X
[118] Sahu, A. K.; Sudhakar, K. Effect of UV Exposure on Bimodal HDPE Floats for Floating Solar Application. J. Mater. Res. Technol. 2019, 8, 147-156. https://doi.org/10.1016/j.jmrt.2017.10.002
https://doi.org/10.1016/j.jmrt.2017.10.002
[119] Mui, E.L.K.; Cheung, W.H.; McKay, G. Tyre Char Preparation from Waste Tyre Rubber for Dye Removal from Effluents. J. Hazard. Mater. 2010, 175, 151-158. https://doi.org/10.1016/j.jhazmat.2009.09.142
https://doi.org/10.1016/j.jhazmat.2009.09.142
[120] Tanthapanichakoon, W.; Ariyadejwanich, P.; Japthong, P.; Nakagawa, K.; Mukai, S.R.; Tamon, H. Adsorption-Desorption Characteristics of Phenol and Reactive Dyes from Aqueous Solution on Mesoporous Activated Carbon Prepared from Waste Tires. Water. Res. 2005, 39, 1347-1353. https://doi.org/10.1016/j.watres.2004.12.044
https://doi.org/10.1016/j.watres.2004.12.044
[121] Lopez, G.; Olazar, M.; Artetxe, M.; Amutio, M.; Elordi, G.; Bilbao, J. Steam Activation of Pyrolytic Tyre Char at Different Temperatures. J. Anal. Appl. Pyrolysis. 2009, 85, 539-543. https://doi.org/10.1016/j.jaap.2008.11.002
https://doi.org/10.1016/j.jaap.2008.11.002
[122] Ogasawara, S.; Kuroda, M.; Wakao, N. Preparation of Activated Carbon by Thermaldecomposition of Used Automotive Tires. Ind. Eng. Chem. Res. 1987, 26, 2552-2556. https://doi.org/10.1021/ie00072a030
https://doi.org/10.1021/ie00072a030
[123] Suuberg, E.M.; Aarna, I. Kinetics of tire derived fuel (TDF) Char Oxidation and Accompanying Changes in Surface Area. Fuel 2009, 88, 179-186. https://doi.org/10.1016/j.fuel.2008.07.018
https://doi.org/10.1016/j.fuel.2008.07.018
[124] Antoniou, N.; Stavropoulos, G.; Zabaniotou, A. Activation of End of Life Tires Pyrolytic Char for Enhancing Viability of Pyrolysis - Critical Review, Analysis and Recommendations for a Hybrid Dual System. Renew. Sustain. Energy. Rev. 2014, 39, 1053-1073. https://doi.org/10.1016/j.rser.2014.07.143
https://doi.org/10.1016/j.rser.2014.07.143
[125] Murillo, R.; Aylón, E.; Navarro, M.V.; Callén, M.S.; Aranda, A.; Mastral, A.M. The Application of Thermal Processes to Valorise Waste Tyre. Fuel. Process. Technol. 2006, 87, 143-147. https://doi.org/10.1016/j.fuproc.2005.07.005
https://doi.org/10.1016/j.fuproc.2005.07.005
[126] Galvagno, S.; Casu, S.; Casabianca, T.; Calabrese, A.; Cornacchia, G. Pyrolysis Process for the Treatment of Scrap Tires: Preliminary Experimental Results. Waste. manage. 2002, 22, 917-923. https://doi.org/10.1016/S0956-053X(02)00083-1
https://doi.org/10.1016/S0956-053X(02)00083-1
[127] Napoli, A.; Soudais, Y.; Lecomte, D.; Castillo, S. Scrap Tyre Pyrolysis: Are the Effluents Valuable Products? J. Anal. Appl. Pyrol. 1997, 40, 373-382. https://doi.org/10.1016/S0165-2370(97)00011-9
https://doi.org/10.1016/S0165-2370(97)00011-9