Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Characteristics and Applications of Waste Tire Pyrolysis Products: A Review

Serhiy Pyshyev1, Yurii Lypko1, Yuriy Demchuk1,2, Oleh Kukhar1, Bohdan Korchak1, Iryna Pochapska1, Ihor Zhytnetskyi3
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandera St., 79013 Lviv, Ukraine; 2 Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine 3 National University of Food Technologies, 68 Volodymyrska St., 01601 Kyiv, Ukraine serhii.v.pyshiev@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.244
AttachmentSize
PDF icon full_text.pdf477.22 KB
Abstract: 
The review considers the environmental problem of generation, accumulation and utilization of waste tires in Ukraine and the world. It is established that waste tires can serve as a valuable raw material for obtaining fuel components and technical/individual chemicals for further industrial processing. One of the promising methods for the rational utilization of waste tires may be their pyrolysis. The pyrolysis process of waste tires produces gaseous, liquid and solid carbonized residue. At the same time, there is no ideal universal technology for the use of waste tire pyrolysis products without preliminary treatment/purification methods. The main characteristics, processing methods and applications of products obtained from the pyrolysis of waste tires are briefly considered.
References: 

[1] Hita, I.; Arabiourrutia, M.; Olazar, M.; Bilbao, J.; Arandes, J.M.; Castaño, P. Opportunities and Barriers for Producing High Quality Fuels from the Pyrolysis of Scrap Tires. Renew. Sust. Energ. Rev. 2016, 56, 745–759. https://doi.org/10.1016/j.rser.2015.11.081
[2] Song, W.; Zhou, J.; Li, Y.; Li, Sh.; Yang, J. Utilization of Waste Tire Powder for Gaseous Fuel Generation via CO2 Gasification Using Waste Heat in Converter Vaporization Cooling Flue. Renew. Energ. 2021, 173, 283–296. https://doi.org/10.1016/j.renene.2021.03.090
[3] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003
[4] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239–246. https://doi.org/10.23939/chcht15.02.239
[5] Korchak, B.; Hrynyshyn, O.; Chervinskyy, T.; Polyuzhin, I. Application of Vacuum Distillation for the Used Mineral Oils Recycling. Chem. Chem. Technol. 2018, 12, 365–371. https://doi.org/10.23939/chcht12.03.365
[6] Grigorov, A.; Tulskii, H.; Chyrkina, M.; Bondarenko, S.; Vavreniuk, S. Complex Approach to the Processing of Polymer Waste into Fuel, Lubricant Materials and Construction Materials for the Oil Refining Industry. Pet. Coal 2023, 65, 1016–1022. http://repositsc.nuczu.edu.ua/handle/123456789/18918
[7] Grigorov, A.; Ponomarenko, V.; Slepuzhnikov, E.; Artemev, S.; Bondarenko, O.; Ilinskyi, O.; Bryhada, O. Сompatibility of Recycling Plastic Lubricants. Pet. Coal 2023, 65, 481–486. http://repositsc.nuczu.edu.ua/handle/123456789/18175
[8] Grigorov, A.; Sinkevich, I.; Ponomarenko, N.; Bondarenko, O.; Usachov, D.; Matukhno, V.; Shevchuk, O. Recycling of Polymer Waste into Plastic Lubricants. Pet. Coal 2022, 64, 709–713. http://repositsc.nuczu.edu.ua/handle/123456789/16152
[9] Hrynyshyn, K.; Chervinskyy, T.; Helzhynskyy, I.; Skorokhoda, V. Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis. Chem. Chem. Technol. 2023, 17, 923–928. https://doi.org/10.23939/chcht17.04.923
[10] Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159–163. https://doi.org/10.23939/chcht16.01.159
[11] Recycling of tires. https://ecological.investments/shini/ (accessed 2021-01-10)
[12] Karagöz, M.; Ağbulut, Ü.; Sarıdemir, S. Waste to Energy: Production of Waste Tire Pyrolysis Oil and Comprehensive Analysis of its Usability in Diesel Engines. Fuel 2020, 275, 117844. https://doi.org/10.1016/j.fuel.2020.117844
[13] Formela, K. Sustainable Development of Waste Tires Recycling Technologies – Recent Advances, Challenges and Future Trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. https://doi.org/10.1016/j.aiepr.2021.06.004
[14] The number of cars in the EU increased to 560 per 1,000 people. https://www.fixygen.ua/news/20240125/kilkist-avtomobiliv.html (accessed 2024-01-25)
[15] Will it be legal to transfer used car tires to the contractor, if his main activity is the production of other rubber products? https://ukraine-oss.com/chy-zakonnoyu-bude-peredacha-pidpryyemstvu-vykon... (accessed 2023-06-30)
[16] Zhang, X.; Tang, J.; Chen, J. Behavior of Sulfur During Pyrolysis of Waste Tires: A Critical Review. J. Energy Inst. 2022, 102, 302–314. https://doi.org/10.1016/j.joei.2022.04.006
[17] Valentini, F.; Pegoretti, A. End-of-Life Options Of Tires. A Review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. https://doi.org/10.1016/j.aiepr.2022.08.006
[18] Where to hand over old tires for recycling: disposal of used tires. https://ascania-shina.com/ua/articles/kuda-sdat-starye-shiny-na-pererabotku (accessed 2022-07-24)
[19] Palos, R.; Gutiérrez, A.; Vela, F.J.; Olazar, M.; Arandes, J.M.; Bilbao, J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy & Fuels 2021, 35, 3529–3557. https://doi.org/10.1021/acs.energyfuels.0c03918
[20] Lin, Y.R.; Teng, H. Mesoporous Carbons from Waste Tire Char and their Application in Wastewater Discoloration. Micropor. Mesopor. Mat. 2002, 54, 167–174. https://doi.org/10.1016/S1387-1811(02)00380-3
[21] Xu, J.; Yu, J.; Xu, J.; Sun, C.; He, W.; Huang, J.; Li, G. High-Value Utilization of Waste Tires: A Review with Focus on Modified Carbon Black from Pyrolysis. Sci. Total Environ. 2020, 742, 140235. https://doi.org/10.1016/j.scitotenv.2020.140235
[22] Bockstal, L; Berchem, T; Schmetz, Q; Richel, A. Devulcanisation and Reclaiming of Tires and Rubber by Physical and Chemical Processes: A Review. J. Cleaner. Prod. 2019, 236, 117574 https://doi.org/10.1016/j.jclepro.2019.07.049
[23] Nakanishi, Y; Mita, K; Yamamoto, K; Ichino, K.; Takenaka, M. Effects of Mixing Process on Spatial Distribution and Coexistence of Sulfur and Zinc in Vulcanized EPDM Rubber. Polymer 2021, 218, 123486 https://doi.org/10.1016/j.polymer.2021.123486
[24] Singh, R.K; Ruj, B; Jana, A; Mondal, S.; Jana, B.; Sadhukhan, A.K.; Gupta, P. Pyrolysis of Three Different Categories of Automotive Tyre Wastes: Product Yield Analysis and Characterization. J. Anal. Appl. Pyrolysis 2018, 135, 379–389 https://doi.org/10.1016/j.jaap.2018.08.011
[25] Han, J.; Li, W.; Liu, D.; Qin, L.; Chen, W.; Xing, F. Pyrolysis Characteristic and Mechanism of Waste Tyre: A Thermogravimetry-Mass Spectrometry Analysis. J. Anal. Appl. Pyrolysis 2018, 129, 1–5. https://doi.org/10.1016/j.jaap.2017.12.016
[26] Nagurskyy, A.; Grynyshyn, O.; Khlibyshyn, Y.; Korchak, B. Use of Rubber Crumb Obtained from Waste Car Tires for the Production of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing. Chem. Chem. Technol. 2023, 17, 674–680. https://doi.org/10.23939/chcht17.03.674
[27] Feng, Z.; Rao, W.; Chen, Ch.; Tian, B.; Li, X.; Li, P.; Guo, Q. Performance Evaluation of Bitumen Modified with Pyrolysis Carbon Black Made from Waste Tires. Constr. Build. Mater. 2016, 111, 495–501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
[28] Williams, P.T. Pyrolysis of Waste Tires: A Review. Waste. Manag. 2013, 33, 1714–1728. https://doi.org/10.1016/j.wasman.2013.05.003
[29] Martinez, J.D.; Puy, N.; Murillo, R.; Garcia, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. https://doi.org/10.1016/j.rser.2013.02.038
[30] Oboirien, B.O.; North B.C. A Review of Waste Tyre Gasification. J. Environ. Chem. Eng. 2017, 5, 5169–5178. https://doi.org/10.1016/j.jece.2017.09.057
[31] Xi-Shan, T.; Wei-Hua, Z.; Dong-Qing, L.I. Combustion Characteristics of the Waste Tire by Thermo-Gravimetric Analysis. J. Nanjing Univ. Technol. 2006, 28, 85–88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
[32] Kim, J.K.; Lee, S.H. New Technology of Crumb Rubber Compounding for Recycling of Waste Tires. J. Appl. Polym. Sci. 2000, 78, 1573–1577. https://doi.org/10.1002/1097-4628(20001121)78:8%3C1573::AID-APP150%3E3.0.CO;2-P
[33] Llompart, M.; Sanchez-Prado, L.; Lamas, J.P.; Garcia-Jares, C.; Roca, E.; Dagnac, T. Hazardous Organic Chemicals in Rubber Recycled Tire Playgrounds and Pavers. Chemosphere 2013, 90, 423–431. https://doi.org/10.1016/j.chemosphere.2012.07.053
[34] Kardnkeyan, S.; Sathiskumar, C.; Moorthy, R.S. Effect of Process Parameters on Tire Pyrolysis: A Review. J. Sci. Ind. Res. 2012, 71, 309–315. http://nopr.niscpr.res.in/handle/123456789/13986
[35] Simic, V; Dabic-Ostojic, S. Interval-Parameter Chance-Constrained Programming Model for Uncertainty-Based Decision Making in Tire Retreading Industry. J. Cleaner. Prod. 2017, 167, 1490–1498. https://doi.org/10.1016/j.jclepro.2016.10.122
[36] Wang, F; Gao, N; Quan, C. Progress on Pyrolysis Technology of Waste Tire and Upgrade and Recycle Utilization of Carbon Black Product. J. Chem. Eng. 2019, 70, 2864–2875. https://doi.org/10.11949/0438-1157.20190198
[37] Uyumaz, A.; Aydogan, B.; Solmaz, H.; Yılmaz, E.; Hopa, D.Y.; Bahtli, T.A.; Solmaz, Ö.; Aksoy, F. Production of waste tyre oil and experimental investigation on combustion, engine performance and exhaust emissions. J. Energy. Inst. 2019, 92, 1406–1418. https://doi.org/10.1016/j.joei.2018.09.001
[38] Narani, S.S.; Abbaspour, M.; Mir Mohammad Hosseini, S.M.; Aflaki, E.; Moghadas Nejad, F. Sustainable Reuse of Waste Tire Textile Fibers (WTTFs) as Reinforcement Materials for Expansive Soils: With a Special Focus on Landfill Liners/Covers. J. Cleaner. Prod. 2020, 247, 119151. https://doi.org/10.1016/j.jclepro.2019.119151
[39] Li, W.; Huang, C.F.; Li, D.P.; Huo, P.; Wang, M.; Han, L.; Chen, G.; Li, H.; Li, X.; Wang, Y.; et al. Derived oil production by catalytic pyrolysis of scrap tires. Chin. J. Catal. 2016, 37, 526–532. https://doi.org/10.1016/S1872-2067(15)60998-6
[40] Yaqoob, H.; Teoh, Y.H.; Sher, F.; Jamil, M.A.; Murtaza, D.; Al Qubeissi, M.; UI Hassan, M.; Mujtaba, M.A. Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries. Sustainability 2021, 13, 3214. https://doi.org/10.3390/su13063214
[41] Wang, Y.P.; Dai, L.L.; Fan, L.L.; Duan, D.; Liu, Y.; Ruan, R.; Yu, Z.; Liu, Y.; Jiang, L. Microwave-Assisted Catalytic Fast co-Pyrolysis of Bamboo Sawdust and Waste Tire for Bio-Oil Production. J. Anal. Appl. Pyrolysis 2017, 123, 224–248. https://doi.org/10.1016/j.jaap.2016.11.025
[42] Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste Tyre Valorization by Catalytic Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2020, 129, 109932. https://doi.org/10.1016/j.rser.2020.109932
[43] Luo, S.Y.; Feng, Y. The Production of Fuel Oil and Combustible Gas by Catalytic Pyrolysis of Waste Tire Using Waste Heat of Blast-Furnace Slag. Energy. Convers. Manage. 2017, 136, 27–35. https://doi.org/10.1016/j.enconman.2016.12.076
[44] Lewandowski, W.M.; Januszewicz, K.; Kosakowski, W. Efficiency and Proportions of Waste Tyre Pyrolysis Products Depending on the Reactor Type - A Review. J. Anal. Appl. Pyrolysis 2019, 140, 25–53. https://doi.org/10.1016/j.jaap.2019.03.018
[45] Quek, A.; Balasubramanian, R. Liquefaction of Waste Tires by Pyrolysis for Oil and Chemicals - A Review. J. Anal. Appl. Pyrolysis 2013, 101, 1–16. https://doi.org/10.1016/j.jaap.2013.02.016
[46] Sathiskumar, C.; Karthikeyan, S. Recycling of Waste Tires and its Energy Storage Application of by-Products: A Review. Sustain. Mater. Technol. 2019, 22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125
[47] Al-Salem, S.M.; Karam, H.J.; Al-Qassimi, M.M. Pyro-gas Analysis of Fixed Bed Reactor End of Life Tires (ELTs) Pyrolysis: A Comparative Study. J. Environ. Manage. 2022, 320, 115852. https://doi.org/10.1016/j.jenvman.2022.115852
[48] Czajczyńska, D.; Krzyżyńska, R.; Ghazal, H.; Jouhara, H. Experimental Investigation of Waste Tires Pyrolysis Gas Desulfurization through Absorption in Alkanolamines Solutions. Int. J. Hydrogen. Energ. 2022, 52, 1006–1014. https://doi.org/10.1016/j.ijhydene.2022.09.275
[49] Abdallah, R.; Juaidi, A.; Assad, M.; Salameh, T.; Manzano-Agugliaro, F. Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study. Energies 2020, 13, 1817. https://doi.org/10.3390/en13071817
[50] Aylón, E.; Murillo, R.; Fernández-Colino, A.; Aranda, A.; García, T.; Callén, M. S.; Mastral, A.M. Emissions from the Combustion of Gas-Phase Products at Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2007, 79, 210–214. https://doi.org/10.3390/en13071817
[51] Mandal, B.; Bandyopadhyay, S.S. Simultaneous Absorption of CO2 and H2S into Aqueous Blends of N-methyldiethanolamine and Diethanolamine. Environ. Sci. Technol. 2006, 40, 6076–6084. https://doi.org/10.1021/es0606475
[52] European Council DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union. L334. 2016. 10.3000/17252555.L_2010.334.eng (accessed 2010-12-17)
[53] Arabiourrutia, M.; Lopez, G.; Elordi, G.; Olazar, M.; Aguado, R.; Bilbao, J. Characterization of the Liquid Obtained in Tyre Pyrolysis in a Conical Spouted Bed Reactor. Int. J. Chem. React. Eng. 2007, 2007, 5. https://doi.org/10.2202/1542-6580.1570
[54] Ding, K.; Zhong, Z.; Zhang, B.; Wang, J.; Min, A.; Ruan, R. Catalytic Pyrolysis of Waste Tire to Produce Valuable Aromatic Hydrocarbons: an Analytical Py-GC/MS Study. J. Anal. Appl. Pyrol. 2016, 122, 55–63. https://doi.org/10.1016/j.jaap.2016.10.023
[55] Ahoor, A.H.; Zandi-Atashbar, N. Fuel Production Based on Catalytic Pyrolysis of Waste Tires as an Optimized Model. Energ. Convers. Manage. 2014, 87, 653–669. https://doi.org/10.1016/j.enconman.2014.07.033
[56] Jantaraksa, N.; Prasassarakich, P.; Reubroycharoen, P.; Hinchiranan, N. Cleaner Alternative Liquid Fuels Derived from the Hydrodesulfurization of Waste Tire Pyrolysis Oil. Energ. Convers. Manage. 2015, 95, 424–434. https://doi.org/10.1016/j.enconman.2015.02.003
[57] Laresgoiti, M.F.; Caballero, B.M.; de Marco, I.; Torres, A.; Cabrero, M.A.; Chomón, M. J. Characterization of the Liquid Products Obtained in Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2004, 71, 917–934. https://doi.org/10.1016/j.jaap.2003.12.003
[58] Pakdel, H.; Pantea, D.M.; Roy, C. Production of dl-limonene by Vacuum Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 57, 91–107. https://doi.org/10.1016/S0165-2370(00)00136-4
[59] Conesa, J.A.; Font, R.; Marcilla, A. Gas from the Pyrolysis of Scrap Tires in a Fluidized Bed Reactor. Energy Fuels 1996, 10, 134–140. https://doi.org/10.1021/ef950152t
[60] Januszewicz, K.; Kazimierski, P.; Kosakowski, W.; Lewandowski, W.M. Waste Tires Pyrolysis for Obtaining Limonene. Materials 2020, 13, 1359. https://doi.org/10.3390/ma13061359
[61] Williams, P.T.; Brindle, A.J. Temperature Selective Condensation of Tyre Pyrolysis Oils to Maximise the Recovery of Single Ring Aromatic Compounds. Fuel 2003, 82, 1023–1031. https://doi.org/10.1016/S0016-2361(03)00016-4
[62] Martín, M.T.; Aguirre, J.L.; Baena-González, J.; González, S.; Pérez-Aparicio, R.; Saiz-Rodríguez, L. Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires. Energies 2022, 15, 2128. https://doi.org/10.3390/en15062128
[63] Campuzano, F.; Gani, A.; Jameel, A.; Zhang, W.; Emwas, A.; Agudelo, F.; Daniel, J.; Sarathy, S.M. On the Distillation of Waste Tire Pyrolysis Oil: A Structural Characterization of the Derived Fractions. Fuel 2021, 290, 120041. https://doi.org/10.1016/j.fuel.2020.120041
[64] Karagöz, M. Investigation of Performance and Emission Characteristics of an CI Engine Fuelled with Diesel—Waste Tire Oil—Butanol Blends. Fuel 2020, 282, 118872. https://doi.org/10.1016/j.fuel.2020.118872
[65] Umeki, E.R.; de Oliveira, C.F.; Torres, R.B.; dos Santos, R.G. Physico-Chemistry Properties of Fuel Blends Composed of Diesel and Tire Pyrolysis Oil. Fuel 2016, 185, 236–242. https://doi.org/10.1016/j.fuel.2016.07.092
[66] Suchocki, T.; Witanowski, Ł.; Lampart, P.; Kazimierski, P.; Januszewicz, K.; Gawron, B. Experimental Investigation of Performance and Emission Characteristics of a Miniature Gas Turbine Supplied by Blends of Kerosene and Waste Tyre Pyrolysis Oil. Energy 2021, 215, 119125. https://doi.org/10.1016/j.energy.2020.119125
[67] Yaqoob, H.; Heng, Y.; Ahmad, M.; Gulzar, M. Potential of Tire Pyrolysis Oil as an Alternate Fuel for Diesel Engines: A Review. J. Energy Inst. 2021, 96, 205–221. https://doi.org/10.1016/j.joei.2021.03.002
[68] Arya, S.; Sharma, A.; Rawat, M.; Agrawal, A. Materials Today: Proceedings Tyre Pyrolysis Oil as an Alternative Fuel: A Review. Mater. Today Proc. 2020, 28, 2481–2484. https://doi.org/10.1016/j.matpr.2020.04.797
[69] Rodriguez, I.; Laresgoiti, M.F.; Cabrero, M.A.; Torres, A.; Chomon, M.J.; Caballero, B. Pyrolysis of Scrap Tires. Fuel. Process. Technol. 2001, 72, 9–22. https://doi.org/10.1016/S0378-3820(01)00174-6
[70] Williams, P.T.; Besler, S.; Taylor, D.T.; Bottrill, R.P. Pyrolysis of Automotive Tyre Waste. Journal of the Institute of Energy 1995, 68, 11–21.
[71] Williams, P.T.; Besler, S. Pyrolysis-Thermogravimetric Analysis of Tires and Tyre Components. Fuel 1995, 74, 1277–1283. https://doi.org/10.1016/0016-2361(95)00083-H
[72] González, J.F.; Encinar, J.M.; Canito, J.L.; Rodrı́guez, J.J. Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study. J. Anal. Appl. Pyrol. 2001, 58, 667–683. https://doi.org/10.1016/S0165-2370(00)00201-1
[73] López, G.; Olazar, M.; Aguado, R.; Bilbao, J. Continuous Pyrolysis of Waste Tires in a Conical Spouted Bed Reactor. Fuel 2010, 89, 1946–1952. https://doi.org/10.1016/j.fuel.2010.03.029
[74] Chaala, A.; Roy, C. Production of Coke from Scrap Tire Vacuum Pyrolysis Oil. Fuel. Process. Technol. 1996, 46, 227–239. https://doi.org/10.1016/0378-3820(95)00065-8
[75] Cunliffe, A.M.; Williams, P.T. Composition of Oils Derived from the Batch Pyrolysis of Tires. J. Anal. Appl. Pyrol. 1998, 44, 131–152. https://doi.org/10.1016/S0165-2370(97)00085-5
[76] Roy, C.; Chaala, A.; Darmstadt, H. The Vacuum Pyrolysis of Used Tires. End-Uses for Oil and Carbon Black Products. J. Anal. Appl. Pyrol. 1999, 51, 201–221. https://doi.org/10.1016/S0165-2370(99)00017-0
[77] Li, S.Q.; Yao, Q.; Chi, Y.; Yan, J.H.; Cen, K.F. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Ind. Eng. Chem. Res. 2004, 43, 5133–5145. https://doi.org/10.1021/ie030115m
[78] Dıez, C.; Martınez, O.; Calvo, L. F.; Cara, J.; Morán, A. Pyrolysis of Tires. Influence of the Final Temperature of the Process on Emissions and the Calorific Value of the Products Recovered. Waste Manage. 2004, 24, 463–469. https://doi.org/10.1016/j.wasman.2003.11.006
[79] Ucar, S.; Karagoz, S.; Ozkan, A.R.; Yanik, J. Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis. Fuel 2005, 84, 1884–1892. https://doi.org/10.1016/j.fuel.2005.04.002
[80] Aylón, E.; Fernández-Colino, A.; Navarro, M.V.; Murillo, R.; García, T.; Mastral, A.M. Waste Tire Pyrolysis: Comparison between Fixed Bed Reactor and Moving Bed Reactor. Ind. Eng. Chem. Res. 2008, 47, 4029–4033. https://doi.org/10.1021/ie071573o
[81] López, F.A.; Centeno, T.A.; Alguacil, F.J.; Lobato, B. Distillation of Granulated Scrap Tires in a Pilot Plant. J. Hazard. Mater. 2011, 190, 285–292. https://doi.org/10.1016/j.jhazmat.2011.03.039
[82] Benallal, B.; Roy, C.; Pakdel, H.; Chabot, S.; Poirie, M.A. Characterization of Pyrolytic Light Naphtha from Vacuum Pyrolysis of Used Tires Comparison with Petroleum Naphtha. Fuel 1995, 74, 1589–1594. https://doi.org/10.1016/0016-2361(95)00165-2
[83] Fernández, A.M.; Barriocanal, C.; Alvarez, R. Pyrolysis of a Waste from the Grinding of Scrap Tires. J. Hazard. Mater. 2012, 203, 236–243. https://doi.org/10.1016/j.jhazmat.2011.12.014
[84] Roy, C.; Darmstadt, H.; Benallal, B.; Amen-Chen, C. Characterization of Naphtha and Carbon Black Obtained by Vacuum Pyrolysis of Polyisoprene Rubber. Fuel process. Technol. 1997, 50, 87–103. https://doi.org/10.1016/S0378-3820(96)01044-2
[85] Zhang, X.; Wang, T.; Ma, L.; Chang, J. Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Manage. 2008, 28, 2301–2310. https://doi.org/10.1016/j.wasman.2007.10.009
[86] Williams, P.T.; Besler, S.; Taylor, D.T. Pyrolysis of Scrap Automotive Tires: The Influence of Temperature and Heating Rate on Product Composition. Fuel 1990, 69, 1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T
[87] Williams, P.T.; Taylor, D.T. Aromatization of Tyre Pyrolysis Oil to Yield Polycyclic Aromatic Hydrocarbons. Fuel 1993, 72, 1469–1474. https://doi.org/10.1016/0016-2361(93)90002-J
[88] Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva, K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers from it. J. Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598
[89] Cypres, R.; Bettens, B. Production of benzoles and active carbon from waste rubber and plastic materials by means of pyrolysis with simultaneous post-cracking. In Pyrolysis and gasification; Elsevier Applied Science London, UK, 1989; pp. 209-229.
[90] Kwon, E.; Castaldi, M.J. Investigation of Mechanisms of Polycyclic Aromatic Hydrocarbons (PAHs) Initiated from the Thermal Degradation of Styrene Butadiene Rubber (SBR) in N2 Atmosphere. Environ. Sci. Technol. 2008, 42, 2175–2180. https://doi.org/10.1021/es7026532
[91] Doğan, O.; Celik, M.B.; Özdalyan, B. The Effect of Tire Derived Fuel/Diesel Fuel Blends Utilization on Diesel Engine Performance and Emissions. Fuel 2012, 95, 340–346. https://doi.org/10.1016/j.fuel.2011.12.033
[92] Ilkilic, C.; Aydin, H. Fuel Production from Waste Vehicle Tires by Catalytic Pyrolysis and its Application in a Diesel Engine. Fuel Process. Technol. 2011, 92, 1129–1135. https://doi.org/10.1016/j.fuproc.2011.01.009
[93] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Performance, Emission and Combustion Studies of a DI Diesel Engine Using Distilled Tires Pyrolysis Oil-Diesel Blends. Fuel Process. Technol. 2008, 89, 152–159. https://doi.org/10.1016/j.fuproc.2007.08.005
[94] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. The Use of Tires Pyrolysis Oil in Diesel Engines. Waste Manage. 2008, 28, 2743–2749. https://doi.org/10.1016/j.wasman.2008.03.007
[95] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Assessment of Pyrolysis Oil as an Energy Source for Diesel Engines. Fuel Process. Technol. 2009, 90, 67–74. https://doi.org/10.1016/j.fuproc.2008.07.017
[96] Islam, M.R.; Hiroyuki, H.; Beg, A.R.; Kazunori, T. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels. Journal of Power and Energy Systems. 2008, 2, 1359–1372. https://doi.org/10.1299/jpes.2.1359
[97] Williams, P.T.; Bottrill, R.P.; Cunliffe, A.M. Combustion of Tyre Pyrolysis Oil. Process. Saf. Environ. 1998, 76, 291–301. https://doi.org/10.1205/095758298529650
[98] Islam, M.R.; Haniu, H.; Beg, M.R.A. Liquid Fuels and Chemicals from Pyrolysis of Motorcycle Tire Waste: Product Yields, Compositions and Related Properties. Fuel 2008, 87, 3112–3122. https://doi.org/10.1016/j.fuel.2008.04.036
[99] Pyshyev, S.V.; Lypko, Yu.V.; Korchak, B.O.; Niavkevych, M.V.; Rudnieva, K.Ye. Investigation of the Extraction Separation of Gasoline Fractions Obtained as a Result of Pyrolysis of Waste Tires. Journal of Coal Chemistry 2023, 6, 28–37. https://doi.org/10.31081/1681-309X-2023-0-6-28-37
[100] Heywood, J.B. Internal combustion engine fundamentals; Mc Graw Hill, 1998.
[101] Pulkrabek, W.W. Engineering fundamentals of the internal combustion engine; Prentice Hall: New Jersey, 1997.
[102] Zabaniotou, A.A.; Stavropoulos, G. Pyrolysis of Used Automobile Tires and Residual Char Utilization. J. Anal. Appl. Pyrol. 2003, 70, 711–722. https://doi.org/10.1016/S0165-2370(03)00042-1
[103] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Vytrykush, N. Influence of Water on Noncatalytic Oxidative Desulfurization of High-Sulfur Straight-Run Oil Fractions. ACS omega 2022, 7, 26495–26503. https://doi.org/10.1021/acsomega.2c02527
[104] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B. B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414–422. https://doi.org/10.23939/chcht15.03.414
[105] ISO 8217:2017 https://www.iso.org/standard/64247.html (accessed 2017-03-01)
[106] DSTU 4058-2001 https://online.budstandart.com/ua/catalog/doc-page?id_doc=54025 (accessed 2002-07-01)
[107] Roy, C.; Chaala, A.; Darmstadt, H.; Caumia, B.; Pakdel, H.; Yang, J. Conversion of used tires to carbon black and oil by pyrolysis. In Rubber recycling; CRC Press Taylor & Francis Group Florida, 2005; pp. 458-499.
[108] Miguel, G.S.; Fowler, G.D.; Sollars, C.J. Pyrolysis of Tire Rubber: Porosity and Adsorption Characteristics of the Pyrolytic Chars. Ind. Eng. Chem. Res. 1998, 37, 2430–2435. https://doi.org/10.1021/ie970728x
[109] Berrueco, C.; Esperanza, E.; Mastral, F.J.; Ceamanos, J.; García-Bacaicoa, P. Pyrolysis of Waste Tires in an Atmospheric Static-Bed Batch Reactor: Analysis of the Gases Obtained. J. Anal. Appl. Pyrol. 2005, 74, 245–253. https://doi.org/10.1016/j.jaap.2004.10.007
[110] Helleur, R.; Popovic, N.; Ikura, M.; Stanciulescu, M.; Liu, D. Characterization and Potential Applications of Pyrolytic Char from Ablative Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 58, 813–824. https://doi.org/10.1016/S0165-2370(00)00207-2
[111] Senneca, O.; Salatino, P.; Chirone, R. A Fast Heating-Rate Thermogravimetric Study of the Pyrolysis of Scrap Tires. Fuel 1999, 78, 1575–1581. https://doi.org/10.1016/S0016-2361(99)00087-3
[112] Cunliffe, A.M.; Williams, P.T. Influence of Process Conditions on the Rate of Activation of Chars Derived from Pyrolysis of Used Tires. Energ. Fuel 1999, 13, 166–175. https://doi.org/10.1021/ef9801524
[113] Murillo, R.; Navarro, M.V.; López, J.M.; Garcıa, T.; Callén, M.S.; Aylón, E.; Mastral, A.M. Activation of Pyrolytic Tire Char with CO2: Kinetic Study. J. Anal. Appl. Pyrol. 2004, 71, 945–957. https://doi.org/10.1016/j.jaap.2003.12.005
[114] Murillo, R.; Navarro, M.V.; López, J.M.; Aylón, E.; Callén, M.S.; García, T.; Mastral, A.M. Kinetic Model Comparison for Waste Tire Char Reaction with CO2. Ind. Eng. Chem. Res. 2004, 43, 7768–7773. https://doi.org/10.1021/ie040026p
[115] Mastral, A.M.; Alvarez, R.; Callén, M.S.; Clemente, C.; Murillo, R. Characterization of Chars from Coal−Tire Copyrolysis. Ind. Eng. Chem. Res. 1999, 38, 2856–2860. https://doi.org/10.1021/ie9805032
[116] Chaala, A.; Darmstadt, H.; Roy, C. Acid-Base Method for the Demineralization of Pyrolytic Carbon Black. Fuel. Process. Technol. 1996, 46, 1–15. https://doi.org/10.1016/0378-3820(95)00044-5
[117] Sebok, E.B.; Taylor, R.L. Carbon blacks. In Encyclopedia of Materials: Science and Technology; Elsevier Ltd., 2001; pp 902–906. https://doi.org/10.1016/B0-08-043152-6/00173-X
[118] Sahu, A. K.; Sudhakar, K. Effect of UV Exposure on Bimodal HDPE Floats for Floating Solar Application. J. Mater. Res. Technol. 2019, 8, 147–156. https://doi.org/10.1016/j.jmrt.2017.10.002
[119] Mui, E.L.K.; Cheung, W.H.; McKay, G. Tyre Char Preparation from Waste Tyre Rubber for Dye Removal from Effluents. J. Hazard. Mater. 2010, 175, 151–158. https://doi.org/10.1016/j.jhazmat.2009.09.142
[120] Tanthapanichakoon, W.; Ariyadejwanich, P.; Japthong, P.; Nakagawa, K.; Mukai, S.R.; Tamon, H. Adsorption-Desorption Characteristics of Phenol and Reactive Dyes from Aqueous Solution on Mesoporous Activated Carbon Prepared from Waste Tires. Water. Res. 2005, 39, 1347–1353. https://doi.org/10.1016/j.watres.2004.12.044
[121] Lopez, G.; Olazar, M.; Artetxe, M.; Amutio, M.; Elordi, G.; Bilbao, J. Steam Activation of Pyrolytic Tyre Char at Different Temperatures. J. Anal. Appl. Pyrolysis. 2009, 85, 539–543. https://doi.org/10.1016/j.jaap.2008.11.002
[122] Ogasawara, S.; Kuroda, M.; Wakao, N. Preparation of Activated Carbon by Thermaldecomposition of Used Automotive Tires. Ind. Eng. Chem. Res. 1987, 26, 2552–2556. https://doi.org/10.1021/ie00072a030
[123] Suuberg, E.M.; Aarna, I. Kinetics of tire derived fuel (TDF) Char Oxidation and Accompanying Changes in Surface Area. Fuel 2009, 88, 179–186. https://doi.org/10.1016/j.fuel.2008.07.018
[124] Antoniou, N.; Stavropoulos, G.; Zabaniotou, A. Activation of End of Life Tires Pyrolytic Char for Enhancing Viability of Pyrolysis - Critical Review, Analysis and Recommendations for a Hybrid Dual System. Renew. Sustain. Energy. Rev. 2014, 39, 1053–1073. https://doi.org/10.1016/j.rser.2014.07.143
[125] Murillo, R.; Aylón, E.; Navarro, M.V.; Callén, M.S.; Aranda, A.; Mastral, A.M. The Application of Thermal Processes to Valorise Waste Tyre. Fuel. Process. Technol. 2006, 87, 143–147. https://doi.org/10.1016/j.fuproc.2005.07.005
[126] Galvagno, S.; Casu, S.; Casabianca, T.; Calabrese, A.; Cornacchia, G. Pyrolysis Process for the Treatment of Scrap Tires: Preliminary Experimental Results. Waste. manage. 2002, 22, 917–923. https://doi.org/10.1016/S0956-053X(02)00083-1
[127] Napoli, A.; Soudais, Y.; Lecomte, D.; Castillo, S. Scrap Tyre Pyrolysis: Are the Effluents Valuable Products? J. Anal. Appl. Pyrol. 1997, 40, 373–382. https://doi.org/10.1016/S0165-2370(97)00011-9