Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Bio-Electrochemical Recovery of Copper from Dilute Acidic Solutions as a Function of External Resistance, Copper and Iron Concentrations

Saeed Hassani Sadrabadi1, Hojat Naderi1, Seyed Mohammad Moshtaghioun2, Federico Aulenta3, Hamid R. Zare4
Affiliation: 
1 Mining & Metallurgical Engineering Department, Yazd University, Yazd, Iran 2 Department of Biology, Yazd University, Yazd, Iran 3 Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy 4 Department of Chemistry, Yazd University, Yazd, Iran naderi@yazd.ac.ir
DOI: 
https://doi.org/10.23939/chcht17.02.420
AttachmentSize
PDF icon full_text.pdf1.11 MB
Abstract: 
Bioelectrochemical systems provide a promising tool for the copper recovery from the heap leaching solutions which usually contain low copper and high iron concentrations. In this study, the role of copper and ferrous ion concentrations, and external resistance in the removal of synthetic sulfuric acid solutions by a lab-scale Microbial Fuel Cell (MFC) was investigated and good results were obtained in the removal of copper.
References: 

[1] Masloboev, V.A.; Seleznev, S.G.; Svetlov, A.V.; Makarov, D.V. Hydrometallurgical Processing of Low-Grade Sulfide Ore and Mine Waste in the Arctic Regions: Perspectives and Challenges. Minerals 2018, 8, 436. https://doi.org/10.3390/min8100436
https://doi.org/10.3390/min8100436

[2] Bogdanović, G.D.; Stanković, V.D.; Trumić, M.S.; Antić, D.V.; Trumić, M.Ž. Leaching of Low-Grade Copper Ores: A Case Study for'Kraku Bugaresku-Cementacija'deposits (Eastern Serbia). J. Min. Metall. A Min. 2016, 52, 45-56.
https://doi.org/10.5937/JMMA1601045B

[3] Vakylabad, A.B.; Schaffie, M.; Naseri, A.; Ranjbar, M.; Manafi, Z. A Procedure for Processing of Pregnant Leach Solution (PLS) Produced from a Chalcopyrite-Ore Bio-Heap: CuO Nano-Powder Fabrication. Hydrometallurgy 2016, 163, 24-32. https://doi.org/10.1016/j.hydromet.2016.03.013
https://doi.org/10.1016/j.hydromet.2016.03.013

[4] Gorgievski, M.; Božić, D.; Stanković, V.; Bogdanović, G. Copper Electrowinning from Acid Mine Drainage: A Case Study from the Closed Mine "Cerovo". J. Hazard. Mater. 2009, 170, 716-721. https://doi.org/10.1016/j.jhazmat.2009.04.135
https://doi.org/10.1016/j.jhazmat.2009.04.135

[5] Moats, M.; Free, M. A Bright Future for Copper Electrowinning, JOM 2007, 59, 34-36. https://doi.org/10.1007/s11837-007-0128-y
https://doi.org/10.1007/s11837-007-0128-y

[6] Schlesinger, M.E.;King, M.J.; Sole, K.C.; Davenport, W.G. Extractive Metallurgy of Copper; Elsevier, 2011.

[7] Logan, B.E. Exoelectrogenic Bacteria that Power Microbial Fuel Cells. Nat. Rev. Microbiol. 2009, 7, 375-381. https://doi.org/10.1038/nrmicro2113
https://doi.org/10.1038/nrmicro2113

[8] Rabaey, K.; Lissens, G.; Siciliano, S.D.; Verstraete, W. A Microbial Fuel Cell Capable of Converting Glucose to Electricity at High Rate and Efficiency. Biotechnol. Lett. 2003, 25, 1531-1535. https://doi.org/10.1023/A:1025484009367
https://doi.org/10.1023/A:1025484009367

[9] Ter Heijne, A.; Liu, F.; Weijden, R.V.D.; Weijma, J.; Buisman, C.J.N.; Hamelers, H.V.M. Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell. Environ. Sci. Technol. 2010, 44, 4376-4381.
https://doi.org/10.1021/es100526g

[10] Rodenas Motos, P.; Ter Heijne, A.; van der Weijden, R.; Saakes, M.; Buisman, C.J.N.; Sleutels, T.H.J.A. High Rate Copper and Energy Recovery in Microbial Fuel Cells. Front. Microbiol. 2015, 6, 527. https://doi.org/10.3389/fmicb.2015.00527
https://doi.org/10.3389/fmicb.2015.00527

[11] Trokhymenko, G.; Gomelya, M. Development of Low Waste Technology of Water Purification from Copper Ions. Chem. Chem. Technol. 2017, 11, 372-377. https://doi.org/10.23939/chcht11.03.372
https://doi.org/10.23939/chcht11.03.372

[12] Choi, Y. Cui, Recovery of Silver from Wastewater Coupled with Power Generation Using a Microbial Fuel Cell. Bioresour. Technol. 2012, 107, 522-525. https://doi.org/10.1016/j.biortech.2011.12.058
https://doi.org/10.1016/j.biortech.2011.12.058

[13] Modin, O.; Wang, X.; Wu, X.; Rauch, S.; Fedje, K.K. Bioelectrochemical Recovery of Cu, Pb, Cd, and Zn from Dilute Solutions. J. Hazard. Mater. 2012, 235, 291-297.
https://doi.org/10.1016/j.jhazmat.2012.07.058

[14] Zhang, B.; Feng, C.; Ni, J.; Zhang, J.; Huang, W. Simultaneous Reduction of Vanadium (V) and Chromium (VI) with Enhanced Energy Recovery Based on Microbial Fuel Cell Technology. J. Power Sources 2012, 204, 34-39. https://doi.org/10.1016/j.jpowsour.2012.01.013
https://doi.org/10.1016/j.jpowsour.2012.01.013

[15] Zhang, L.-J.; Tao, H.-C.; Wei, X.-Y.; Lei, T.; Li, J.-B.; Wang, A.-J.; Wu, W.-M. Bioelectrochemical Recovery of Ammonia--Copper (II) Complexes from Wastewater Using a Dual Chamber Microbial Fuel Cell. Chemosphere 2012, 89, 1177-1182. https://doi.org/10.1016/j.chemosphere.2012.08.011
https://doi.org/10.1016/j.chemosphere.2012.08.011

[16] Fedje, K.K.; Modin, O.; Strömvall, A.-M. Copper Recovery from Polluted Soils Using Acidic Washing and Bioelectrochemical Systems. Metals (Basel) 2015, 5, 1328-1348. https://doi.org/10.3390/met5031328
https://doi.org/10.3390/met5031328

[17] Kaur, A.; Boghani, H.C.; Milner, E.M.; Kimber, R.L.; Michie, I.A.; Daalmans, R.; Dinsdale, R.M.; Guwy, A.I.; Head, I.M.; Lloyd, J.R. et al. Bioelectrochemical Treatment and Recovery of Copper from Distillery Waste Effluents Using Power and Voltage Control Strategies. J. Hazard. Mater. 2019, 371, 18-26. https://doi.org/10.1016/j.jhazmat.2019.02.100
https://doi.org/10.1016/j.jhazmat.2019.02.100

[18] Liu, H.; Logan, B.E. Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environ. Sci. Technol. 2004, 38, 4040-4046. https://doi.org/10.1021/es0499344
https://doi.org/10.1021/es0499344

[19] Ramasamy, R.P.; Ren, Z.; Mench, M.M.; Regan, J.M. Impact of Initial Biofilm Growth on the Anode Impedance of Microbial Fuel Cells. Biotechnol. Bioeng. 2008, 101, 101-108. https://doi.org/10.1002/bit.21878
https://doi.org/10.1002/bit.21878

[20] Liu, H.; Cheng, S.; Logan, B.E. Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration. Environ. Sci. Technol. 2005, 39, 5488-5493. https://doi.org/10.1021/es050316c
https://doi.org/10.1021/es050316c

[21] Lyon, D.Y.; Buret, F.; Vogel, T.M.; Monier, J.-M. Is resistance Futile? Changing External Resistance does not Improve Microbial Fuel Cell Performance. Bioelectrochemistry 2010, 78, 2-7. https://doi.org/10.1016/j.bioelechem.2009.09.001
https://doi.org/10.1016/j.bioelechem.2009.09.001

[22] Zhang, L.; Zhu, X.; Li, J.; Liao, Q.; Ye, D. Biofilm Formation and Electricity Generation of a Microbial Fuel Cell Started up under Different External Resistances. J. Power Sources 2011, 196, 6029-6035. https://doi.org/10.1016/j.jpowsour.2011.04.013
https://doi.org/10.1016/j.jpowsour.2011.04.013

[23] Koók, L.; Nemestóthy, N.; Bélafi-Bakó, K.; Bakonyi, P. Investigating the Specific Role of External Load on the Performance Versus Stability Trade-Off in Microbial Fuel Cells. Bioresour. Technol. 2020, 309, 123313. https://doi.org/10.1016/j.biortech.2020.123313
https://doi.org/10.1016/j.biortech.2020.123313

[24] Kamau, J.M.; Mbui, D.N.; Mwaniki, J.M.; Mwaura, F.B.; Kamau, G.N. Microbial Fuel Cells: Influence of External Resistors on Power, Current and Power Density. J. Thermodyn. Catal. 2017, 8, 100-182. http://dx.doi.org/10.4172/2157-7544.1000182
https://doi.org/10.4172/2157-7544.1000182

[25] Torres, C.I.; Kato Marcus, A.; Rittmann, B.E. Proton Transport Inside the Biofilm Limits Electrical Current Generation by Anode-Respiring Bacteria. Biotechnol. Bioeng. 2008, 100, 872-881. https://doi.org/10.1002/bit.21821
https://doi.org/10.1002/bit.21821

[26] Tao, H.-C.; Liang, M.; Li, W.; Zhang, L.-J.; Ni, J.-R.; Wu, W.M. Removal of Copper from Aqueous Solution by Electrodeposition in Cathode Chamber of Microbial Fuel Cell. J. Hazard. Mater. 2011, 189, 186-192. https://doi.org/10.1016/j.jhazmat.2011.02.018
https://doi.org/10.1016/j.jhazmat.2011.02.018

[27] Zhang, H.-M.; Xu, W.; Li, G.; Liu, Z.-M.; Wu, Z.-C.; Li, B.-G. Assembly of Coupled Redox Fuel Cells Using Copper as Electron Acceptors to Generate Power and its in-situ Retrieval. Sci. Rep. 2016, 6, 21059. https://doi.org/10.1038/srep21059
https://doi.org/10.1038/srep21059

[28] Sumisha, A.; Ashar, J.; Asok, A.; Karthick, S.; Haribabu, K. Reduction of Copper and Generation of Energy in Double Chamber Microbial Fuel Cell Using Shewanella putrefaciens. Sep. Sci. Technol. 2020, 55, 265. https://doi.org/10.1080/01496395.2019.1625919
https://doi.org/10.1080/01496395.2019.1625919