Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Transformation of Hexoses on Natural and Synthetic Zeolites

Lyubov Patrylak1, Serhii Konovalov1, Stepan Zubenko1, Anzhela Yakovenko1
Affiliation: 
1 V.P.Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences 1 Acad. Kukharya St., 02094 Kyiv, Ukraine lkpg@ukr.net
DOI: 
https://doi.org/10.23939/chcht17.02.287
AttachmentSize
PDF icon full_text.pdf369.05 KB
Abstract: 
. A number of zeolite catalysts based on synthetic powder zeolites and natural Ukrainian clinoptilolite as well as mordenite-clinoptilolite zeolite rocks were synthesized. The activity and selectivity of the prepared samples were compared in glucose and fructose dehydration into 5-hydroxymethylfurfural in a dimethyl sulfoxide environment.
References: 

[1] Kukhar, V.P. Bioresursy - Potentsialna Syrovyna dlia Promyslovogo Organichnogo Syntezu. Kataliz i Neftekhimia 2007, 15, 1-15 (in Ukrainian).

[2] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Over-view. Catalysts 2018, 8, 637. https://doi.org/10.3390/catal8120637
https://doi.org/10.3390/catal8120637

[3] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
https://doi.org/10.23939/chcht16.02.220

[4] Chen, N.; Zhu, Z.; Ma, H.; Liao, W.; Lü, H. Catalytic Upgrad-ing of Biomass-derived 5-Hydroxymethylfurfural to Biofuel 2,5-Dimethylfuran over Beta Zeolite Supported Non-noble Co Catalyst. Mol. Catal. 2020, 486, 110882. https://doi.org/10.1016/j.mcat.2020.110882
https://doi.org/10.1016/j.mcat.2020.110882

[5] Chithra, P.A.; Darbha, S. Catalytic Conversion of HMF into Ethyl Levulinate - A Biofuel over Hierarchical Zeolites. Catal. Commun. 2020, 140, 105998. https://doi.org/10.1016/j.catcom.2020.105998
https://doi.org/10.1016/j.catcom.2020.105998

[6] Kläusli, T. AVA Biochem: Commercialising Renewable Plat-form Chemical 5-HMF. Green Process. Synth. 2014, 3, 235-236. https://doi.org/10.1515/gps-2014-0029
https://doi.org/10.1515/gps-2014-0029

[7] Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 14, 5246-5249. https://doi.org/10.1021/ja400097f
https://doi.org/10.1021/ja400097f

[8] Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Combined Function of Brönsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. Chem-CatChem. 2016, 8, 3107-3111. https://doi.org/10.1002/cctc.201600783
https://doi.org/10.1002/cctc.201600783

[9] Pienkoss, F.; Ochoa-Hernandez, C.; Theyssen, N.; Leitner, W. Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustain. Chem. Eng. 2018, 6, 8782-8789. https://doi.org/10.1021/acssuschemeng.8b01151
https://doi.org/10.1021/acssuschemeng.8b01151

[10] Levytska S.I. Doslidzhennia Izomeryzatsii Glukozy u Fruk-tozu na MgO-ZrO2 Katalizatori v Protochnyh Umovah. Kataliz i Neftekhimia 2017, 26, 46-52 (in Ukraine).

[11] Vieira, J.L.; Almeida-Trapp, M.; Mithöfer, A.; Plass, W.; Gallo, J.M.R. Rationalizing the Conversion of Glucose and Xylose Catalyzed by a Combination of Lewis and Brönsted Acids. Catal. Today 2020, 344, 92-101. https://doi.org/10.1016/j.cattod.2018.10.032
https://doi.org/10.1016/j.cattod.2018.10.032

[12] Van Putten, R-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.; Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499-1597. https://doi.org/10.1021/cr300182k
https://doi.org/10.1021/cr300182k

[13] Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zhu, Y.; Li,Y. Conversion of Carbohydrates to Furfural via Selective Cleavage of the Carbon-Carbon Bond: The Cooperative Effects of Zeolite and Solvent. Green Chem. 2016, 18, 1619-1624. https://doi.org/10.1039/C5GC01948F
https://doi.org/10.1039/C5GC01948F

[14] Cui, M.; Wu, Z.; Huang, R.; Qi, W.; Su, R.; He, Z. Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural. Renew. Energ. 2018, 125, 327-333. https://doi.org/10.1016/j.renene.2018.02.085
https://doi.org/10.1016/j.renene.2018.02.085

[15] Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities-A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30-36. https://doi.org/10.1016/j.fuproc.2017.03.021
https://doi.org/10.1016/j.fuproc.2017.03.021

[16] Tosi, I.; Riisager, A.; Taarning, E.; Jensen, P.R.; Meier, S. Kinetic Analysis of Hexose Conversion to Methyl Lactate by Sn-Beta: Effects of Substrate Masking and of Water. Catal. Sci. Tech-nol. 2018, 8, 2137-2145. https://doi.org/10.1039/C8CY00335A
https://doi.org/10.1039/C8CY00335A

[17] Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Highly Selective Conversion of Glucose into Furfural over Modified zeolites. Chem. Eng. J. 2017, 307, 868-876. http://dx.doi.org/10.1016/j.cej.2016.09.001
https://doi.org/10.1016/j.cej.2016.09.001

[18] Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Brönsted and Lewis Acid ZSM-5 Zeolites for the Catalytic Dehydration of Glucose into 5-Hydroxymethylfurfural. Chem. Eng. J. 2016, 303, 22-30. https://doi.org/10.1016/j.cej.2016.05.120
https://doi.org/10.1016/j.cej.2016.05.120

[19] Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent Ad-vance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural. Renew. Sust. Energ. Rev. 2021, 147, 111253. https://doi.org/10.1016/j.rser.2021.111253
https://doi.org/10.1016/j.rser.2021.111253

[20] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1
https://doi.org/10.1007/s13204-021-01682-1

[21] Dyer, A.; Hriljac, J.; Evans, N.; Stokes I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R. et al. The Use of Columns of the Zeolite Clinoptilolite in the Remediation of Aqueous Nuclear Waste Streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473-2491. https://doi.org/10.1007/s10967-018-6329-8
https://doi.org/10.1007/s10967-018-6329-8

[22] Al-Maliki, S.B.; Al-Khayat, Z.O.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255-258. https://doi.org/10.23939/chcht16.02.255
https://doi.org/10.23939/chcht16.02.255

[23] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5-Hydroxymethylfurfural on Large-Pore Zeolites. East.-Eur. J. En-terp. Technol. 2021, 2, 38-44. https://doi.org/10.15587/1729-4061.2021.226575
https://doi.org/10.15587/1729-4061.2021.226575

[24] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Yu.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521
https://doi.org/10.23939/chcht16.04.521

[25] Rouqerol, F.; Rouqerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 1998.

[26] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882. https://doi.org/10.1007/s13204-021-01771-1
https://doi.org/10.1007/s13204-021-01771-1

[27] Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and Hierarchy of Clinoptilolite Poros-ity. J. Phys. Chem. Solids. 2010, 71, 1269-1277. https://doi.org/10.1016/j.jpcs.2010.05.006
https://doi.org/10.1016/j.jpcs.2010.05.006

[28] Baerlocher, Ch.; Meier, W.M.; Olson, D.N. Atlas of zeolite structure types; Elsevier: Amsterdam, 2007.