Characterization, Antioxidant Activity, and In Silico Molecular Docking of Chitosan from Snail Shell Waste by Ultrasonic Technique
Attachment | Size |
---|---|
full_text.pdf | 818.04 KB |
[1] Bedoić, R.; Ćosić, B.; Duić, N. Technical Potential and
Geographic Distribution of Agricultural Residues, Co-Products and By-Products in the European Union. Sci. Total Environ. 2018, 686, 568-579. https://doi.org/10.1016/j.scitotenv.2019.05.219
https://doi.org/10.1016/j.scitotenv.2019.05.219
[2] Vanitha, C.; Kuppusamy, M.R.; Sridhar, T.M.; Sureshkumar, R.; Mahalakshmi, N. Synthesis Characterization of Nano-Hydroxy Apatite From White Snail Shells and Removal of Methylene Blue. Int. J. Innov. Res. Adv. Eng. 2017, 4, 2014-2018.
[3] Oyekunle, D.T; Omoleye, J. A. Effect of Particle Sizes on the Kinetics of Demineralization of Snail Shell for Chitin Synthesis Using Acetic Acid. Heliyon 2019, 5, 1-7. https://doi.org/10.1016/j.heliyon.2019.e02828
https://doi.org/10.1016/j.heliyon.2019.e02828
[4] Oyekunle, D.T; Omoleye, J. Extraction, Characterization and Kinetics of Demineralised of Chitin Produced From Snail Shells of Different Particle Sizes Using 1.2M HCL. Int. J. Mech. Eng.
Technol. 2019, 10, 2010-2020.
[5] Xu, R.; Mao, J.; Penh, N.; Luo, X.; Chang, C. Chitin/clay
Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143-150. https://doi.org/10.1016/j.carbpol.2018.01.073
https://doi.org/10.1016/j.carbpol.2018.01.073
[6] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, K.;
Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly (ethylene glycol). Chem. Chem. Technol. 2014, 8,
https://doi.org/10.23939/chcht08.02.171
171-176. https://doi.org/10.23939/chcht08.02.171
https://doi.org/10.23939/chcht08.02.171
[7] Bazunova, M.; Sharafutdinova, L.; Bazunova, A.; Lazdin, R.; Elinson, M.; Kulish, E. Biocompatible Gel-like Forms of Drugs on the Basis of Solutions of Polysaccharide Chitosan with Alcohols. Chem. Chem. Technol. 2018, 12, 43-46. https://doi.org/10.23939/chcht12.01.043
https://doi.org/10.23939/chcht12.01.043
[8] Neha, K.; Anitha, R.; Subashini, R.; Natarajan, A.; Sridha. T. M. Synthesis and Characterization of Chitosan/Potato Peel Powder-Based Hydrogel and its in vitro Antimicrobial Activity. J. Appl. Pharm. Sci. 2019, 9, 66-71. https://doi.org/10.7324/JAPS.2019.90909
https://doi.org/10.7324/JAPS.2019.90909
[9] Solomko, N.; Budishevska, O.; Voronov, S. Peroxide Chitosan Derivatives and their Application. Chem. Chem. Technol. 2007, 1, 137-147. https://doi.org/10.23939/chcht01.03.137
https://doi.org/10.23939/chcht01.03.137
[10] Umarudin; Rahayu, S.; Warsito.; Widyarti, S. Molecular
Characterization, Antioxidant, And Toxicity Activity Of Chitosan Isolated From Lissahatina Fulica Shell Waste Using Hot Plate
Magnetic Stirrer Technique. Rasayan J. Chem. 2022, 15, 2299-2303. http://doi.org/10.31788/RJC.2022.1547050
https://doi.org/10.31788/RJC.2022.1547050
[11] Umarudin; Widyarti, S.; Warsito; Rahayu, S. Effect of
Lissachatina Fulica Chitosan on the Antioxidant and Lipid Profile of Hypercholesterolemic Male Wistar Rats. J. Pharm. Pharmacogn. Res. 2022, 10, 995-1005. https://doi.org/10.56499/jppres22.1468_10.6.995
https://doi.org/10.56499/jppres22.1468_10.6.995
[11] Sharma, K.; Somavarapu, S.; Colombani, A.; Govind, N.; Taylor, K. M.G. Crosslinked Chitosan Nanoparticle Formulations for Delivery from Pressurized Metered Dose Inhalers. Eur. J. Pharm. Biopharm. 2012, 81, 74-81. https://doi.org/10.1016/j.ejpb.2011.12.014
https://doi.org/10.1016/j.ejpb.2011.12.014
[12] Carocho, M; Ferreira, I.C.F.R. A review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic
Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15-25. https://doi.org/10.1016/j.fct.2012.09.021
https://doi.org/10.1016/j.fct.2012.09.021
[13] Kancheva, V. D. Phenolic Antioxidants-Radical-Scavenging and Chain-Breaking Activity: A Comparative Study. Eur. J. Lipid Sci. Technol. 2009, 111, 1072-1089. https://doi.org/10.1002/ejlt.200900005
https://doi.org/10.1002/ejlt.200900005
[14] Yuliana, A.; Pradeckta, L.S.; Savitri, E.; Handaratri, A.R.; Sumarno. The Effect of Sonication on the Characteristic of
Chitosan. Proceeding of International Conference on Chemical and Material Engineering 2012, 1-5.
[15] Albu, S.; Joyce, E; Paniwnyk, L; Lorimer, J.P.; Mason, T.J. Potential for the Use of Ultrasound in the Extraction of Antioxidants from Rosmarinus Officinalis for the Food and Pharmaceutical Industry. Ultrason. Sonochem. 2004, 11, 261-265. https://doi.org/10.1016/j.ultsonch.2004.01.015
https://doi.org/10.1016/j.ultsonch.2004.01.015
[16] Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Med. 2018, 13, 20. https://doi.org/10.1186/s13020-018-0177-x
https://doi.org/10.1186/s13020-018-0177-x
[17] AOAC. Official Methods of Analysis, 18th edn. Washington, DC: Association of Official Analytical Chemists, 2007. https://doi.org/10.1007/BF02670789
https://doi.org/10.1007/BF02670789
[18] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of
Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2019, 2019, 8781013. https://doi.org/10.1155/2019/8781013
https://doi.org/10.1155/2019/8781013
[19] Journot, C.M.A.; Nicolle, L.; Lavanchy, Y.; Gerber-Lamaire, S. Selection of Water-Soluble Chitosan by Microwave-Assisted
Degradation and pH-Controlled Precipitation. Polymers 2020, 12, 1274. https://doi.org/10.3390/polym12061274
https://doi.org/10.3390/polym12061274
[20] Hsu, C.-Y.; Chan, Y.-P.; Chang, J. Antioxidant Activity of Extract from Polygonum cuspidatum. Biol. Res. 2007, 40, 12-21. https://doi:10.4067/S0716-97602007000100002
https://doi.org/10.4067/S0716-97602007000100002
[21] Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M. A. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://doi.org/10.23939/chcht11.01.065
https://doi.org/10.23939/chcht11.01.065
[22] Oyekunle, D. T; Omoleye, J. A. E. New Process for
Synthesizing Chitosan from Snail Shells. J. Phys. Conf. Ser. 2019, 1299, 012089. https://doi.org/:10.1088/1742-6596/1299/1/012089
https://doi.org/10.1088/1742-6596/1299/1/012089
[23] [EFSA] European Food Safety Authority. Scientific Opinion on the Safety of Chitinglucan as a Novel Food Ingredient. EFSA J. 2011, 9, 2137. https://doi.org/:10.2903/j.efsa.2011.2137
https://doi.org/10.2903/j.efsa.2011.2137
[24] Ningrum, S.R.; Sinaga, S.M.; Harahap, U. Isolation of Chitosan from Cuttlefish Bones. Int. J. Sci. Technol. Manag. 2022, 3,
https://doi.org/10.46729/ijstm.v3i3.523
785-788. https://doi.org/10.46729/ijstm.v3i3.523
https://doi.org/10.46729/ijstm.v3i3.523
[25] Yuan, Y.; Wan, Z.-L.; Yin, S.-W.; Teng, Z.; Yang, X.-Q.; Qi, J.-R.; Wang, X.-Y. Formation and Dynamic Interfacial Adsorption-of Glycinin/Chitosan Soluble Complex at Acidic pH:
Relationship to Mixed Emulsion Stability. Food Hydrocoll. 2013, 31, 85-93. https://doi.org/10.1016/j.foodhyd.2012.10.003
https://doi.org/10.1016/j.foodhyd.2012.10.003
[26] Kusumaningsih, T.; Masykur, A.; Arief, U. Synthesis of
hitosan from the Chitin Of Escargot (Achatina fulica). Biofarmasi Journal of Natural Product Biochemistry 2004, 2, 64-68. http://dx.doi.org/10.13057/biofar/f020204
https://doi.org/10.13057/biofar/f020204
[27] Waryani, S.W.; Silvia, R.; Hanum, F. Utilization of Chitosan from The Shells of Snail (Achatina fulica) as a Preservative of Plush Fish (Rastrelliger sp) and Catfish (Clarias batrachus). Jurnal Teknik Kimia 2014, 3, 51-57. https://doi.org/10.32734/jtk.v3i4.1656
https://doi.org/10.32734/jtk.v3i4.1656
[28] Hossain, M.S; Iqbal, A. Production and Characterization of Chitosan from Shrimp Waste. J. Bangladesh Agric. Univ. 2014, 12, 153-160. https://doi.org/10.3329/jbau.v12i1.21405
https://doi.org/10.3329/jbau.v12i1.21405
[29] Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus Monodon and its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107, 662-667. https://doi.org/10.1016/j.ijbiomac.2017.09.035
https://doi.org/10.1016/j.ijbiomac.2017.09.035
[30] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of
Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2018, 1-8. https://doi.org/10.1155/2019/8781013
https://doi.org/10.1155/2019/8781013
[31] Zhang, H.; Li, Y.; Zhang, X; Liu, B.; Zhao, H.; Chen, D. Directly Determining the Molecular Weight of Chitosan with Atomic Force Microscopy. Front Nanosci. Nanotech. 2016, 185, 57-63. https://doi.org/10.15761/FNN.1000121
https://doi.org/10.15761/FNN.1000121
[32] Lu, C.; Li, H.; Li, C.; Chen, B.; Shen, Y. Chemical
Composition and Radical Scavenging Activity of Amygdalus
pedunculata Pall Leaves Essential Oil. Food Chem. Toxicol. 2018, 19, 368-374. https://doi.org/10.1016/j.fct.2018.02.012
https://doi.org/10.1016/j.fct.2018.02.012
[33] Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and Antibacterial Evaluation of Polysaccharides Sequentially Extracted from Onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92-101. https://doi.org/10.1016/j.ijbiomac.2017.12.154
https://doi.org/10.1016/j.ijbiomac.2017.12.154
[34] Prakakash, P.; Neelu, G. Therapeutic Uses of Ocimum Santum Linn (Tulsi) with a Note on Eugenol and its Pharmacological Ac-tions: A Short Review. Indian J. Physiol. Pharmacol. 2005, 49, 125-131.
[35] Jafari, H.; Bernaerts, K. V.; Dodi. G.; Shavandi. A.
Chitooligosaccharides for Wound Healing Biomaterials Engineer-ing. Mater. Sci. Eng. C 2020, 117, 111266. https://doi:10.1016/j.msec.2020.111266
https://doi.org/10.1016/j.msec.2020.111266
[36] Ngo, D.-H.; Kim, S.-K. Chapter Two - Antioxidant Effects Of Chitin, Chitosan, and their Derivatives. Adv. Food Nutr. Res. 2014, 73, 15-31. https://doi:10.1016/b978-0-12-800268-1.00002-0
https://doi.org/10.1016/B978-0-12-800268-1.00002-0
[37] Rahayu, S.; Prasetyawan, S.; Suprihatin, T.; Ciptadi, G. In-silico study of Marselia crenata compounds as activator Keap1/Nrf2 pathway in ovarian function. IOP Conf. Ser.: Earth Environ. Sci. 2021, 743, 012056. https://doi.org/10.1088/1755-1315/743/1/012056
https://doi.org/10.1088/1755-1315/743/1/012056