Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Characterization, Antioxidant Activity, and In Silico Molecular Docking of Chitosan from Snail Shell Waste by Ultrasonic Technique

Umarudin1,2 Sri Rahayu3, Sri Widyarti3, Warsito4,5
Affiliation: 
1 Doctoral student of Biology, Faculty of Mathematic and Natural Sciences, University of Brawijaya, Malang 65145, East Java, Indonesia. 2 Department of Pharmacy, Diploma III Pharmacy, Academy Pharmacy of Surabaya, Surabaya 60231, East Java, Indonesia. 3 Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, East Java, Indonesia. 4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, East Java, Indonesia. 5 Essential Oil's Institute, University of Brawijaya, Malang 65145, East Java, Indonesia. umarudin@student.ub.ac.id
DOI: 
https://doi.org/10.23939/chcht17.01.126
AttachmentSize
PDF icon full_text.pdf818.04 KB
Abstract: 
Snails are often found in Indonesia, especially at Kediri, but the snail shell has no commercial value. This research report describes the characterization and antioxidant activity of chitosan from snail shell waste (chitosan-SSW) by ultrasonic technique and analyzes the potential of chitosan as an inhibitor of receptors of free radicals using an in silico molecular docking method. Characterization of chitosan-SSW was performed to analyze the content of water, protein, and functional groups as well as molecular weight, particle size, mor-phology, antioxidant activity, and in silico molecular docking. We found that chitosan-SSW with ultrasonic treatment had a high degree of deacetylation (DD) and high molecular weight (MW). The characteristic of chitosan-SSW was found to be as follows: water content of 0.43 %, protein content of 1.59 %, molecular weight of 2.198 kDa, and deacetylation degree value of 79.50 %. Importantly, chitosan-SSW had high antioxidant activity to potentially reduce free radical of DPPH with IC50 value of 2.44 µg/mL. Chitosan is predicted to have the potential as an inhibitor of lipoxygenase, CYP2C9, and NADPH-oxidase.
References: 

[1] Bedoić, R.; Ćosić, B.; Duić, N. Technical Potential and

Geographic Distribution of Agricultural Residues, Co-Products and By-Products in the European Union. Sci. Total Environ. 2018, 686, 568-579. https://doi.org/10.1016/j.scitotenv.2019.05.219
https://doi.org/10.1016/j.scitotenv.2019.05.219

[2] Vanitha, C.; Kuppusamy, M.R.; Sridhar, T.M.; Sureshkumar, R.; Mahalakshmi, N. Synthesis Characterization of Nano-Hydroxy Apatite From White Snail Shells and Removal of Methylene Blue. Int. J. Innov. Res. Adv. Eng. 2017, 4, 2014-2018.

[3] Oyekunle, D.T; Omoleye, J. A. Effect of Particle Sizes on the Kinetics of Demineralization of Snail Shell for Chitin Synthesis Using Acetic Acid. Heliyon 2019, 5, 1-7. https://doi.org/10.1016/j.heliyon.2019.e02828
https://doi.org/10.1016/j.heliyon.2019.e02828

[4] Oyekunle, D.T; Omoleye, J. Extraction, Characterization and Kinetics of Demineralised of Chitin Produced From Snail Shells of Different Particle Sizes Using 1.2M HCL. Int. J. Mech. Eng.

Technol. 2019, 10, 2010-2020.

[5] Xu, R.; Mao, J.; Penh, N.; Luo, X.; Chang, C. Chitin/clay

Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143-150. https://doi.org/10.1016/j.carbpol.2018.01.073
https://doi.org/10.1016/j.carbpol.2018.01.073

[6] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, K.;

Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly (ethylene glycol). Chem. Chem. Technol. 2014, 8,
https://doi.org/10.23939/chcht08.02.171

171-176. https://doi.org/10.23939/chcht08.02.171
https://doi.org/10.23939/chcht08.02.171

[7] Bazunova, M.; Sharafutdinova, L.; Bazunova, A.; Lazdin, R.; Elinson, M.; Kulish, E. Biocompatible Gel-like Forms of Drugs on the Basis of Solutions of Polysaccharide Chitosan with Alcohols. Chem. Chem. Technol. 2018, 12, 43-46. https://doi.org/10.23939/chcht12.01.043
https://doi.org/10.23939/chcht12.01.043

[8] Neha, K.; Anitha, R.; Subashini, R.; Natarajan, A.; Sridha. T. M. Synthesis and Characterization of Chitosan/Potato Peel Powder-Based Hydrogel and its in vitro Antimicrobial Activity. J. Appl. Pharm. Sci. 2019, 9, 66-71. https://doi.org/10.7324/JAPS.2019.90909
https://doi.org/10.7324/JAPS.2019.90909

[9] Solomko, N.; Budishevska, O.; Voronov, S. Peroxide Chitosan Derivatives and their Application. Chem. Chem. Technol. 2007, 1, 137-147. https://doi.org/10.23939/chcht01.03.137
https://doi.org/10.23939/chcht01.03.137

[10] Umarudin; Rahayu, S.; Warsito.; Widyarti, S. Molecular

Characterization, Antioxidant, And Toxicity Activity Of Chitosan Isolated From Lissahatina Fulica Shell Waste Using Hot Plate

Magnetic Stirrer Technique. Rasayan J. Chem. 2022, 15, 2299-2303. http://doi.org/10.31788/RJC.2022.1547050
https://doi.org/10.31788/RJC.2022.1547050

[11] Umarudin; Widyarti, S.; Warsito; Rahayu, S. Effect of

Lissachatina Fulica Chitosan on the Antioxidant and Lipid Profile of Hypercholesterolemic Male Wistar Rats. J. Pharm. Pharmacogn. Res. 2022, 10, 995-1005. https://doi.org/10.56499/jppres22.1468_10.6.995
https://doi.org/10.56499/jppres22.1468_10.6.995

[11] Sharma, K.; Somavarapu, S.; Colombani, A.; Govind, N.; Taylor, K. M.G. Crosslinked Chitosan Nanoparticle Formulations for Delivery from Pressurized Metered Dose Inhalers. Eur. J. Pharm. Biopharm. 2012, 81, 74-81. https://doi.org/10.1016/j.ejpb.2011.12.014
https://doi.org/10.1016/j.ejpb.2011.12.014

[12] Carocho, M; Ferreira, I.C.F.R. A review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic

Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15-25. https://doi.org/10.1016/j.fct.2012.09.021
https://doi.org/10.1016/j.fct.2012.09.021

[13] Kancheva, V. D. Phenolic Antioxidants-Radical-Scavenging and Chain-Breaking Activity: A Comparative Study. Eur. J. Lipid Sci. Technol. 2009, 111, 1072-1089. https://doi.org/10.1002/ejlt.200900005
https://doi.org/10.1002/ejlt.200900005

[14] Yuliana, A.; Pradeckta, L.S.; Savitri, E.; Handaratri, A.R.; Sumarno. The Effect of Sonication on the Characteristic of

Chitosan. Proceeding of International Conference on Chemical and Material Engineering 2012, 1-5.

[15] Albu, S.; Joyce, E; Paniwnyk, L; Lorimer, J.P.; Mason, T.J. Potential for the Use of Ultrasound in the Extraction of Antioxidants from Rosmarinus Officinalis for the Food and Pharmaceutical Industry. Ultrason. Sonochem. 2004, 11, 261-265. https://doi.org/10.1016/j.ultsonch.2004.01.015
https://doi.org/10.1016/j.ultsonch.2004.01.015

[16] Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Med. 2018, 13, 20. https://doi.org/10.1186/s13020-018-0177-x
https://doi.org/10.1186/s13020-018-0177-x

[17] AOAC. Official Methods of Analysis, 18th edn. Washington, DC: Association of Official Analytical Chemists, 2007. https://doi.org/10.1007/BF02670789
https://doi.org/10.1007/BF02670789

[18] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of

Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2019, 2019, 8781013. https://doi.org/10.1155/2019/8781013
https://doi.org/10.1155/2019/8781013

[19] Journot, C.M.A.; Nicolle, L.; Lavanchy, Y.; Gerber-Lamaire, S. Selection of Water-Soluble Chitosan by Microwave-Assisted

Degradation and pH-Controlled Precipitation. Polymers 2020, 12, 1274. https://doi.org/10.3390/polym12061274
https://doi.org/10.3390/polym12061274

[20] Hsu, C.-Y.; Chan, Y.-P.; Chang, J. Antioxidant Activity of Extract from Polygonum cuspidatum. Biol. Res. 2007, 40, 12-21. https://doi:10.4067/S0716-97602007000100002
https://doi.org/10.4067/S0716-97602007000100002

[21] Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M. A. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://doi.org/10.23939/chcht11.01.065
https://doi.org/10.23939/chcht11.01.065

[22] Oyekunle, D. T; Omoleye, J. A. E. New Process for

Synthesizing Chitosan from Snail Shells. J. Phys. Conf. Ser. 2019, 1299, 012089. https://doi.org/:10.1088/1742-6596/1299/1/012089
https://doi.org/10.1088/1742-6596/1299/1/012089

[23] [EFSA] European Food Safety Authority. Scientific Opinion on the Safety of Chitinglucan as a Novel Food Ingredient. EFSA J. 2011, 9, 2137. https://doi.org/:10.2903/j.efsa.2011.2137
https://doi.org/10.2903/j.efsa.2011.2137

[24] Ningrum, S.R.; Sinaga, S.M.; Harahap, U. Isolation of Chitosan from Cuttlefish Bones. Int. J. Sci. Technol. Manag. 2022, 3,
https://doi.org/10.46729/ijstm.v3i3.523

785-788. https://doi.org/10.46729/ijstm.v3i3.523
https://doi.org/10.46729/ijstm.v3i3.523

[25] Yuan, Y.; Wan, Z.-L.; Yin, S.-W.; Teng, Z.; Yang, X.-Q.; Qi, J.-R.; Wang, X.-Y. Formation and Dynamic Interfacial Adsorption-of Glycinin/Chitosan Soluble Complex at Acidic pH:

Relationship to Mixed Emulsion Stability. Food Hydrocoll. 2013, 31, 85-93. https://doi.org/10.1016/j.foodhyd.2012.10.003
https://doi.org/10.1016/j.foodhyd.2012.10.003

[26] Kusumaningsih, T.; Masykur, A.; Arief, U. Synthesis of

hitosan from the Chitin Of Escargot (Achatina fulica). Biofarmasi Journal of Natural Product Biochemistry 2004, 2, 64-68. http://dx.doi.org/10.13057/biofar/f020204
https://doi.org/10.13057/biofar/f020204

[27] Waryani, S.W.; Silvia, R.; Hanum, F. Utilization of Chitosan from The Shells of Snail (Achatina fulica) as a Preservative of Plush Fish (Rastrelliger sp) and Catfish (Clarias batrachus). Jurnal Teknik Kimia 2014, 3, 51-57. https://doi.org/10.32734/jtk.v3i4.1656
https://doi.org/10.32734/jtk.v3i4.1656

[28] Hossain, M.S; Iqbal, A. Production and Characterization of Chitosan from Shrimp Waste. J. Bangladesh Agric. Univ. 2014, 12, 153-160. https://doi.org/10.3329/jbau.v12i1.21405
https://doi.org/10.3329/jbau.v12i1.21405

[29] Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus Monodon and its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107, 662-667. https://doi.org/10.1016/j.ijbiomac.2017.09.035
https://doi.org/10.1016/j.ijbiomac.2017.09.035

[30] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of

Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2018, 1-8. https://doi.org/10.1155/2019/8781013
https://doi.org/10.1155/2019/8781013

[31] Zhang, H.; Li, Y.; Zhang, X; Liu, B.; Zhao, H.; Chen, D. Directly Determining the Molecular Weight of Chitosan with Atomic Force Microscopy. Front Nanosci. Nanotech. 2016, 185, 57-63. https://doi.org/10.15761/FNN.1000121
https://doi.org/10.15761/FNN.1000121

[32] Lu, C.; Li, H.; Li, C.; Chen, B.; Shen, Y. Chemical

Composition and Radical Scavenging Activity of Amygdalus

pedunculata Pall Leaves Essential Oil. Food Chem. Toxicol. 2018, 19, 368-374. https://doi.org/10.1016/j.fct.2018.02.012
https://doi.org/10.1016/j.fct.2018.02.012

[33] Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and Antibacterial Evaluation of Polysaccharides Sequentially Extracted from Onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92-101. https://doi.org/10.1016/j.ijbiomac.2017.12.154
https://doi.org/10.1016/j.ijbiomac.2017.12.154

[34] Prakakash, P.; Neelu, G. Therapeutic Uses of Ocimum Santum Linn (Tulsi) with a Note on Eugenol and its Pharmacological Ac-tions: A Short Review. Indian J. Physiol. Pharmacol. 2005, 49, 125-131.

[35] Jafari, H.; Bernaerts, K. V.; Dodi. G.; Shavandi. A.

Chitooligosaccharides for Wound Healing Biomaterials Engineer-ing. Mater. Sci. Eng. C 2020, 117, 111266. https://doi:10.1016/j.msec.2020.111266
https://doi.org/10.1016/j.msec.2020.111266

[36] Ngo, D.-H.; Kim, S.-K. Chapter Two - Antioxidant Effects Of Chitin, Chitosan, and their Derivatives. Adv. Food Nutr. Res. 2014, 73, 15-31. https://doi:10.1016/b978-0-12-800268-1.00002-0
https://doi.org/10.1016/B978-0-12-800268-1.00002-0

[37] Rahayu, S.; Prasetyawan, S.; Suprihatin, T.; Ciptadi, G. In-silico study of Marselia crenata compounds as activator Keap1/Nrf2 pathway in ovarian function. IOP Conf. Ser.: Earth Environ. Sci. 2021, 743, 012056. https://doi.org/10.1088/1755-1315/743/1/012056
https://doi.org/10.1088/1755-1315/743/1/012056