Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Isomerization of Glucose into Fructose over Basic Oxide Catalysts

Svitlana Levytska1, Volodymyr Brei1
Affiliation: 
1 Institute for Sorption and Endoecology Problems, Ukrainian National Academy of Sciences, 13 Oleg Mudrak St., Kyiv 03164, Ukraine s_levytska@ukr.net
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf862.63 KB
Abstract: 
The isomerization of 10-30% glucose aqueous solutions over several mixed basic oxides supported on γ-Al2O3 was studied at 90°C and atmospheric pressure using batch and flow reactors. The catalyst samples were obtained by conventional impregnation method which is important for the development of the readily commercially available catalyst. It was found that the MgO-ZrO2/Al2O3 catalyst with atomic ratio of Mg/Zr= 4 and the deposited oxide phase content of 20 wt.% provides glucose conversion up to 19% at 90°C, with maximum fructose selectivity up to 100% using the continuous flow fixed bed reactor. After 30h of operation the deactivated catalyst has been regenerated by air calcination for 2 hours at 600°C, restoring its activity and selectivity.
References: 

[1] Parker, K.; Salas, M.; Nwosu, V. C. High Fructose Corn Syrup: Production, Uses and Public Health Concerns. Biotechnol. Mol. Biol. Rev. 2010, 5, 71–78.
[2] Prudius, S.V.; Vyslogusova, N.M.; Brei V.V. Konversiia fruktozy v etyllaktat na SnO2-vmisnykh katalizatorakh. Khimiia, fizyka ta tekhnolohiia poverkhni 2019, 10, 67–74. https://doi.org/10.15407/hftp10.01.067
[3] Prudius, S.V.; Hes, N.L.; Mylin, A.M.; Brei, V.V. Continuous Conversion of Fructose into Methyl Lactate over SnO2–ZnO/Al2O3 Catalyst. J. Chem. Technol. 2021, 29, 1–9. https://doi.org/10.15421/082107
[4] Hes, N.; Mylin, A.; Prudius, S. Catalytic Production of Levulinic and Formic Acids from Fructose over Superacid ZrO2–SiO2–SnO2 Catalyst. Colloids Interfaces 2022, 6, 4. https://doi.org/10.3390/colloids6010004
[5] Thombal, R.S.; Jadhav, V.H. Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural (HMF) Using ZrCl4 Catalyst in Nitromethane. Biofuel Res. J. 2014, 1, 81–84. https://doi.org/10.18331/BRJ2015.1.3.4
[6] Wach, W. Fructose. In Ulmann’s encyclopedia of industrial chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2012; pp 104–116. https://doi.org/10.1002/14356007.a12_047.pub2
[7] Liu, M.; Jia, S; Li, С.; Zhang, А.; Song, С.; Guo, X. Facile Preparation of Sn-β Zeolites by Post-Synthesis (Isomorphous Substitution) Method for Isomerization of Glucose to Fructose. Chin. J. Catal. 2014, 35, 723–732. https://doi.org/10.1016/S1872-2067(14)60071-1
[8] Corma, A.; Iborra. S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem Rev. 2007, 107, 2411–2502. https://doi.org/10.1021/cr050989d
[9] Buchholz, K.; Seibel, J. Industrial Carbohydrate Biotransformations. Carbohydr. Res. 2008, 343, 1966–1979. https://doi.org/10.1016/j.carres.2008.02.007
[10] DiCosimo, R.; McAuliffe, J.; Poulose, A.J.; Bohlmann, G. Industrial Use of Immobilized Enzymes. Chem. Soc. Rev. 2013, 42, 6437–6474. https://doi.org/10.1039/c3cs35506c
[11] Moliner, M.; Román-Leshkov, Y.; Davis, M.E. Tin-Containing Zeolites are Highly Active Catalysts for the Isomerization of Glucose in Water. PNAS 2010, 107, 6164–6168. https://doi.org/10.1073/pnas.1002358107
[12] Bermejo-Deval, R.; Assary, R.S.; Nikolla, E.; Moliner, M.; Román-Leshkov, Y.; Hwang, S.-J.; Palsdottir, A.; Silverman, D.; Lobo, R.F.; Curtiss, L.A.; et al. Metalloenzyme-Like Catalyzed Isomerizations of Sugars by Lewis Acid Zeolites. PNAS 2012, 109, 9727–9732. https://doi.org/10.1073/pnas.1206708109
[13] Dijkmans, J.; Gabriels, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B.F. Productive Sugar Isomerization with Highly Active Sn in Dealuminated β Zeolites, Green Chem. 2013, 15, 2777–2785. https://doi.org/10.1039/c3gc41239c
[14] Moliner, M. State of the Art of Lewis Acid-Containing Zeolites: Lessons from Fine Chemistry to New Biomass Transformation Processes. Dalton Trans. 2014, 43, 4197–4208. https://doi.org/10.1039/c3dt52293h
[15] Dapsens, P.Y.; Mondelli, C.; Jagielski, J.; Hauert, R.; Perez-Ramirez, J. Hierarchical Sn-MFI Zeolites Prepared by Facile Top-Down Methods for Sugar Isomerisation. Catal. Sci. Technol. 2014, 4, 2302–2311. https://doi.org/10.1039/c4cy00172a
[16] Cho, H.J.; Gould, N. S.; Vattipalli, V.; Sabnis, S.; Chaikittisilpd, W.; Okubo, T.; Xu, B.; Fan, W. Fabrication of Hierarchical Lewis Acid Sn-BEA with Tunable Hydrophobicity for Cellulosic Sugar Isomerization. Microporous Mesoporous Mater. 2019, 278, 387–396. https://doi.org/10.1016/j.micromeso.2018.12.046
[17] Lu, S.; Lyu, J.; Han, X.; Bai, P.; Guo, X. Effective Isomerization of Glucose to Fructose by Sn-MFI/MCM-41 Composites as Lewis Acid Catalysts. J. Taiwan Inst. Chem. Eng. 2020, 116, 272–278. https://doi.org/10.1016/j.jtice.2020.11.010
[18] Palai, Y. N.; Shrotri, A.; Asakawa, M.; Fukuoka, A. Silica Supported Sn Catalysts with Tetrahedral Sn Sites for Selective Isomerization of Glucose to Fructose. Catal. Today 2021, 365, 241–248. https://doi.org/10.1016/j.cattod.2020.04.032
[19] Lecomte, J.; Finiels, A.; Moreau, C. Kinetic Study of the Isomerization of Glucose into Fructose in the Presence of Anion-Modified Hydrotalcites. Starch/Stärke 2002, 54, 75–79. https://doi.org/10.1002/1521-379X(200202)54:2<75::AID-STAR75>3.0.CO;2-F
[20] Yu, S.; Kim, E.; Park, S.; Song, I.K.; Jung, J.C. Isomerization of Glucose into Fructose over Mg–Al Hydrotalcite Catalysts. Catal. Commun. 2012, 29, 63–67. http://dx.doi.org/10.1016/j.catcom.2012.09.015
[21] Delidovich, I.; Palkovits, R. Catalytic Activity and Stability of Hydrophobic Mg–Al hydrotalcites in the Continuous Aqueous-Phase Isomerization of Glucose into Fructose. Catal. Sci. Technol. 2014, 4, 4322–4329. https://doi.org/10.1039/c4cy00776j
[22] Marianou, A. A.; Michailof, C. M.; Ipsakis, D. K.; Karakoulia, S. A.; Kalogiannis, K. G.; Yiannoulakis, H.; Triantafyllidis, K. S.; Lappas A. A. Isomerization of Glucose into Fructose over Natural and Synthetic MgO Catalysts. ACS Sustainable Chem. Eng. 2018, 6, 16459–16470 https://doi.org/10.1021/acssuschemeng.8b03570
[23] Rabee, A.I.M.; Le, S.D.; Nishimura S. MgO-ZrO2 Mixed Oxides as Effective and Reusable Base Catalysts for Glucose Isomerization into Fructose in Aqueous Media. Chem Asian J. 2020, 15, 294–300. https://doi.org/10.1002/asia.201901534
[24] Delidovich, I. Recent Progress in Base-Catalyzed Isomerization of D-glucose into D-fructose. Curr. Opin. Green Sustainable Chem. 2021, 27,100414. https://doi.org/10.1016/j.cogsc.2020.100414
[25] Ventura, M.; Mazarío, J.; Domine M. E. Isomerization of Glucose-to-Fructose in Water over a Continuous Flow Reactor using Ca Al Mixed Oxide as Heterogeneous Catalyst. ChemCatChem. 2022, 14, e202101229. https://doi.org/10.1002/cctc.202101229
[26] Mahala, S.; Arumugam, S. M.; Kumar, S.; Devi, B.; Elumalai, S. Tuning of MgO's Base Characteristics by Blending it with Amphoteric ZnO Facilitating the Selective Glucose Isomerization to Fructose for Bioenergy Development. Nanoscale Adv. 2023, 5, 2470–2486. https://doi.org/10.1039/d3na00097d
[27] Fu, J.; Shen, F.; Liu, X.; Qi, X. Synthesis of MgO-Doped Ordered Mesoporous Carbons by Mg2+-Tannin Coordination for Efficient Isomerization of Glucose to Fructose. Green Energy Environ. 2023, 8, 842–851. https://doi.org/10.1016/j.gee.2021.11.010
[28] Levytska, S.I. Doslidzhennia izomeryzatsii hliukozy u fruktozu na MgO-ZrO2 katalizatori v protochnomu rezhymi. Kataliz i Neftekhimia 2017, 26, 46–52. [in Ukrainian].
[29] Levytska, S.І.; Brei, V.V. Sposib izomeryzatsii hliukozy u fruktozu. Ukrainа 129724, lystopad 12, 2018. [in Ukrainian]
[30] Levytska, S.; Mylin, A.; Varvarin, A. Catalytic Synthesis of Methyl Glycolate from Glyoxal Methanol Solution over Base Catalysts. Chem. Chem. Technol. 2022, 16, 515–520. https://doi.org/10.23939/chcht16.04.515
[31] Tanabe, K. Solid Acid and Bases. Their Catalytic Properties; Academic Press: New York–London, 1970.