Isomerization of Glucose into Fructose over Basic Oxide Catalysts
| Attachment | Size |
|---|---|
| 862.63 KB |
[1] Parker, K.; Salas, M.; Nwosu, V. C. High Fructose Corn Syrup: Production, Uses and Public Health Concerns. Biotechnol. Mol. Biol. Rev. 2010, 5, 71–78.
[2] Prudius, S.V.; Vyslogusova, N.M.; Brei V.V. Konversiia fruktozy v etyllaktat na SnO2-vmisnykh katalizatorakh. Khimiia, fizyka ta tekhnolohiia poverkhni 2019, 10, 67–74. https://doi.org/10.15407/hftp10.01.067
[3] Prudius, S.V.; Hes, N.L.; Mylin, A.M.; Brei, V.V. Continuous Conversion of Fructose into Methyl Lactate over SnO2–ZnO/Al2O3 Catalyst. J. Chem. Technol. 2021, 29, 1–9. https://doi.org/10.15421/082107
[4] Hes, N.; Mylin, A.; Prudius, S. Catalytic Production of Levulinic and Formic Acids from Fructose over Superacid ZrO2–SiO2–SnO2 Catalyst. Colloids Interfaces 2022, 6, 4. https://doi.org/10.3390/colloids6010004
[5] Thombal, R.S.; Jadhav, V.H. Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural (HMF) Using ZrCl4 Catalyst in Nitromethane. Biofuel Res. J. 2014, 1, 81–84. https://doi.org/10.18331/BRJ2015.1.3.4
[6] Wach, W. Fructose. In Ulmann’s encyclopedia of industrial chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2012; pp 104–116. https://doi.org/10.1002/14356007.a12_047.pub2
[7] Liu, M.; Jia, S; Li, С.; Zhang, А.; Song, С.; Guo, X. Facile Preparation of Sn-β Zeolites by Post-Synthesis (Isomorphous Substitution) Method for Isomerization of Glucose to Fructose. Chin. J. Catal. 2014, 35, 723–732. https://doi.org/10.1016/S1872-2067(14)60071-1
[8] Corma, A.; Iborra. S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem Rev. 2007, 107, 2411–2502. https://doi.org/10.1021/cr050989d
[9] Buchholz, K.; Seibel, J. Industrial Carbohydrate Biotransformations. Carbohydr. Res. 2008, 343, 1966–1979. https://doi.org/10.1016/j.carres.2008.02.007
[10] DiCosimo, R.; McAuliffe, J.; Poulose, A.J.; Bohlmann, G. Industrial Use of Immobilized Enzymes. Chem. Soc. Rev. 2013, 42, 6437–6474. https://doi.org/10.1039/c3cs35506c
[11] Moliner, M.; Román-Leshkov, Y.; Davis, M.E. Tin-Containing Zeolites are Highly Active Catalysts for the Isomerization of Glucose in Water. PNAS 2010, 107, 6164–6168. https://doi.org/10.1073/pnas.1002358107
[12] Bermejo-Deval, R.; Assary, R.S.; Nikolla, E.; Moliner, M.; Román-Leshkov, Y.; Hwang, S.-J.; Palsdottir, A.; Silverman, D.; Lobo, R.F.; Curtiss, L.A.; et al. Metalloenzyme-Like Catalyzed Isomerizations of Sugars by Lewis Acid Zeolites. PNAS 2012, 109, 9727–9732. https://doi.org/10.1073/pnas.1206708109
[13] Dijkmans, J.; Gabriels, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B.F. Productive Sugar Isomerization with Highly Active Sn in Dealuminated β Zeolites, Green Chem. 2013, 15, 2777–2785. https://doi.org/10.1039/c3gc41239c
[14] Moliner, M. State of the Art of Lewis Acid-Containing Zeolites: Lessons from Fine Chemistry to New Biomass Transformation Processes. Dalton Trans. 2014, 43, 4197–4208. https://doi.org/10.1039/c3dt52293h
[15] Dapsens, P.Y.; Mondelli, C.; Jagielski, J.; Hauert, R.; Perez-Ramirez, J. Hierarchical Sn-MFI Zeolites Prepared by Facile Top-Down Methods for Sugar Isomerisation. Catal. Sci. Technol. 2014, 4, 2302–2311. https://doi.org/10.1039/c4cy00172a
[16] Cho, H.J.; Gould, N. S.; Vattipalli, V.; Sabnis, S.; Chaikittisilpd, W.; Okubo, T.; Xu, B.; Fan, W. Fabrication of Hierarchical Lewis Acid Sn-BEA with Tunable Hydrophobicity for Cellulosic Sugar Isomerization. Microporous Mesoporous Mater. 2019, 278, 387–396. https://doi.org/10.1016/j.micromeso.2018.12.046
[17] Lu, S.; Lyu, J.; Han, X.; Bai, P.; Guo, X. Effective Isomerization of Glucose to Fructose by Sn-MFI/MCM-41 Composites as Lewis Acid Catalysts. J. Taiwan Inst. Chem. Eng. 2020, 116, 272–278. https://doi.org/10.1016/j.jtice.2020.11.010
[18] Palai, Y. N.; Shrotri, A.; Asakawa, M.; Fukuoka, A. Silica Supported Sn Catalysts with Tetrahedral Sn Sites for Selective Isomerization of Glucose to Fructose. Catal. Today 2021, 365, 241–248. https://doi.org/10.1016/j.cattod.2020.04.032
[19] Lecomte, J.; Finiels, A.; Moreau, C. Kinetic Study of the Isomerization of Glucose into Fructose in the Presence of Anion-Modified Hydrotalcites. Starch/Stärke 2002, 54, 75–79. https://doi.org/10.1002/1521-379X(200202)54:2<75::AID-STAR75>3.0.CO;2-F
[20] Yu, S.; Kim, E.; Park, S.; Song, I.K.; Jung, J.C. Isomerization of Glucose into Fructose over Mg–Al Hydrotalcite Catalysts. Catal. Commun. 2012, 29, 63–67. http://dx.doi.org/10.1016/j.catcom.2012.09.015
[21] Delidovich, I.; Palkovits, R. Catalytic Activity and Stability of Hydrophobic Mg–Al hydrotalcites in the Continuous Aqueous-Phase Isomerization of Glucose into Fructose. Catal. Sci. Technol. 2014, 4, 4322–4329. https://doi.org/10.1039/c4cy00776j
[22] Marianou, A. A.; Michailof, C. M.; Ipsakis, D. K.; Karakoulia, S. A.; Kalogiannis, K. G.; Yiannoulakis, H.; Triantafyllidis, K. S.; Lappas A. A. Isomerization of Glucose into Fructose over Natural and Synthetic MgO Catalysts. ACS Sustainable Chem. Eng. 2018, 6, 16459–16470 https://doi.org/10.1021/acssuschemeng.8b03570
[23] Rabee, A.I.M.; Le, S.D.; Nishimura S. MgO-ZrO2 Mixed Oxides as Effective and Reusable Base Catalysts for Glucose Isomerization into Fructose in Aqueous Media. Chem Asian J. 2020, 15, 294–300. https://doi.org/10.1002/asia.201901534
[24] Delidovich, I. Recent Progress in Base-Catalyzed Isomerization of D-glucose into D-fructose. Curr. Opin. Green Sustainable Chem. 2021, 27,100414. https://doi.org/10.1016/j.cogsc.2020.100414
[25] Ventura, M.; Mazarío, J.; Domine M. E. Isomerization of Glucose-to-Fructose in Water over a Continuous Flow Reactor using Ca Al Mixed Oxide as Heterogeneous Catalyst. ChemCatChem. 2022, 14, e202101229. https://doi.org/10.1002/cctc.202101229
[26] Mahala, S.; Arumugam, S. M.; Kumar, S.; Devi, B.; Elumalai, S. Tuning of MgO's Base Characteristics by Blending it with Amphoteric ZnO Facilitating the Selective Glucose Isomerization to Fructose for Bioenergy Development. Nanoscale Adv. 2023, 5, 2470–2486. https://doi.org/10.1039/d3na00097d
[27] Fu, J.; Shen, F.; Liu, X.; Qi, X. Synthesis of MgO-Doped Ordered Mesoporous Carbons by Mg2+-Tannin Coordination for Efficient Isomerization of Glucose to Fructose. Green Energy Environ. 2023, 8, 842–851. https://doi.org/10.1016/j.gee.2021.11.010
[28] Levytska, S.I. Doslidzhennia izomeryzatsii hliukozy u fruktozu na MgO-ZrO2 katalizatori v protochnomu rezhymi. Kataliz i Neftekhimia 2017, 26, 46–52. [in Ukrainian].
[29] Levytska, S.І.; Brei, V.V. Sposib izomeryzatsii hliukozy u fruktozu. Ukrainа 129724, lystopad 12, 2018. [in Ukrainian]
[30] Levytska, S.; Mylin, A.; Varvarin, A. Catalytic Synthesis of Methyl Glycolate from Glyoxal Methanol Solution over Base Catalysts. Chem. Chem. Technol. 2022, 16, 515–520. https://doi.org/10.23939/chcht16.04.515
[31] Tanabe, K. Solid Acid and Bases. Their Catalytic Properties; Academic Press: New York–London, 1970.