Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Investigation on the Swelling Kinetics of Gelatin Based Hydrogels

Olga Zawadzka1, Przemysław Gnatowski1,2, Edyta Piłat1, Justyna Kucińska-Lipka1
Affiliation: 
1 Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland 2 Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, 23A Dębowa, 80-204 Gdańsk, Poland przemyslaw.gnatowski@pg.edu.pl, justyna.kucinska-lipka@pg.edu.pl
DOI: 
https://doi.org/10.23939/chcht19.02.259
AttachmentSize
PDF icon full_text.pdf1.52 MB
Abstract: 
A series of gelatin-based hydrogels was prepared, and the effects of different crosslinking agents and agar content were studied in detail. Results indicate that borax and glutaraldehyde are good crosslinking agents. Moreover, all samples were described with a hindered Fickian water diffusion, making it an interesting choice for medical applications.
References: 

[1] Suberlyak, S.; Petrina, R.; Grytsenko, O.; Baran, N.; Komar, A.; Berezhnyy, B. Investigation of the Sorption Capacity of Polyvinylpyrrolidone Copolymers As the Basis of Hydrogel Cosmetic Masks with Plant Biomass Extracts. Chem. Chem. Technol. 2022, 16, 555-563. https://doi.org/10.23939/chcht16.04.555
https://doi.org/10.23939/chcht16.04.555

[2] Jacob, S.; Nair, A. B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021, 13, 357. https://doi.org/10.3390/pharmaceutics13030357
https://doi.org/10.3390/pharmaceutics13030357

[3] Bukartyk, M.M.; Nosova, N.G.; Maikovych, O.V.; Bukartyk, N.M.; Stasiuk, A.V.; Dron, I.A.; Fihurka, N.V.; Khomyak, S.V.; Ostapiv, D.D.; Vlizlo, V.V., et al. Preparation and Research of Properties of Combined Alginate/Gelatin Hydrogels. J. Chem. Technol. 2022, 30, 11-20. https://doi.org/10.15421/jchemtech.v30i1.242230
https://doi.org/10.15421/jchemtech.v30i1.242230

[4] Qiao, C.; Cao, X.; Wang, F. Swelling Behavior Study of Physically Crosslinked Gelatin Hydrogels. Polym. Polym. Compos. 2012, 20, 53-58. https://doi.org/10.1177/0967391112020001-210
https://doi.org/10.1177/0967391112020001-210

[5] Pandey, P.M.; Nayak, S.K.; Shaw, G.S.; Uvanesh, K.; Banerjee, I.; Al-Zahrani, S.M.; Anis, A.; Pal, K. An in-Depth Analysis of the Swelling, Mechanical, Electrical, and Drug Release Properties of Agar-Gelatin Co-Hydrogels. Polym. Plast. Technol. Eng. 2017, 56, 667-677. https://doi.org/10.1080/03602559.2016.1211694
https://doi.org/10.1080/03602559.2016.1211694

[6] Liu, T.; Zhang, Y.; Sun, M.; Jin, M.; Xia, W.; Yang, H.; Wang, T. Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels. Front. Bioeng. Biotechnol. 2021, 9. https://doi.org/10.3389/fbioe.2021.810155
https://doi.org/10.3389/fbioe.2021.810155

[7] Omer, A.M.; Sadik, W.A.-A.; El-Demerdash, A.-G.M.; Hassan, H.S. Formulation of PH-Sensitive Aminated Chitosan-Gelatin Crosslinked Hydrogel for Oral Drug Delivery. J. Saudi Chem. Soc. 2021, 25, 101384. https://doi.org/10.1016/j.jscs.2021.101384
https://doi.org/10.1016/j.jscs.2021.101384

[8] Alipal, J.; Mohd Pu'ad, N.A.S.; Lee, T.C.; Nayan, N.H. .; Sahari, N.; Basri, H.; Idris, M.I.; Abdullah, H.Z. A Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation. Mater. Today Proc. 2021, 42, 240-250. https://doi.org/10.1016/j.matpr.2020.12.922
https://doi.org/10.1016/j.matpr.2020.12.922

[9] Mohanto, S.; Narayana, S.; Merai, K.P.; Kumar, J.A.; Bhunia, A.; Hani, U.; Al Fatease, A.; Gowda, B.H.J.; Nag, S.; Ahmed, M.G., et al. Advancements in Gelatin-Based Hydrogel Systems for Biomedical Applications: A State-of-the-Art Review. Int. J. Biol. Macromol. 2023, 253, 127143. https://doi.org/10.1016/j.ijbiomac.2023.127143
https://doi.org/10.1016/j.ijbiomac.2023.127143

[10] Mushtaq, F.; Raza, Z.A.; Batool, S.R.; Zahid, M.; Onder, O.C.; Rafique, A.; Nazeer, M.A. Preparation, Properties, and Applications of Gelatin-Based Hydrogels (GHs) in the Environmental, Technological, and Biomedical Sectors. Int. J. Biol. Macromol. 2022, 218, 601-633. https://doi.org/10.1016/j.ijbiomac.2022.07.168
https://doi.org/10.1016/j.ijbiomac.2022.07.168

[11] Skopinska-Wisniewska, J.; Tuszynska, M.; Olewnik-Kruszkowska, E. Comparative Study of Gelatin Hydrogels Modified by Various Cross-Linking Agents. Materials (Basel) 2021, 14, 396. https://doi.org/10.3390/ma14020396
https://doi.org/10.3390/ma14020396

[12] Yang, Z.; Hemar, Y.; Hilliou, L.; Gilbert, E.P.; McGillivray, D.J.; Williams, M.A.K.; Chaieb, S. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules 2016, 17, 590-600. https://doi.org/10.1021/acs.biomac.5b01538
https://doi.org/10.1021/acs.biomac.5b01538

[13] Maikovych, O.; Nosova, N.; Bukartyk, N.; Fihurka, N.; Ostapiv, D.; Samaryk, V.; Pasetto, P.; Varvarenko, S. Gelatin-Based Hydrogel with Antiseptic Properties: Synthesis and Properties. Appl. Nanosci. 2023, 13, 7611-7623. https://doi.org/10.1007/s13204-023-02956-6
https://doi.org/10.1007/s13204-023-02956-6

[14] Ali, S.; Ranjha, N.M.; Ahmad, B.; Khan, A.A.; Hassan, F.U.; Aziz, T.; Alharbi, M.; Alshammari, A.; Alasmari, A.F.; Alharbi, M.E. Sustained Release of Drug Facilitated Through Chemically Crosslinked Polyvinyl Alcohol-Gelatin (PVA-GE) Hydrogels. A Sustainable Biomedical Approach. Polish J. Chem. Technol. 2023, 25, 56-65. https://doi.org/10.2478/pjct-2023-0017
https://doi.org/10.2478/pjct-2023-0017

[15] Moshayedi, S.; Sarpoolaky, H.; Khavandi, A. Fabrication, Swelling Behavior, and Water Absorption Kinetics of Genipin‐crosslinked Gelatin-Chitosan Hydrogels. Polym. Eng. Sci. 2021, 61, 3094-3103. https://doi.org/10.1002/pen.25821
https://doi.org/10.1002/pen.25821

[16] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
https://doi.org/10.23939/chcht16.02.220

[17] Heidarian, P.; Kouzani, A.Z. A Self-Healing Nanocomposite Double Network Bacterial Nanocellulose/Gelatin Hydrogel for Three Dimensional Printing. Carbohydr. Polym. 2023, 313, 120879. https://doi.org/10.1016/j.carbpol.2023.120879
https://doi.org/10.1016/j.carbpol.2023.120879

[18] Kundakci, S.; Öǧüt, H.G.; Üzüm, Ö.B.; Karadaǧ, E. Swelling Characterization and Adsorptive Features of Acrylamide/Itaconic Acid Hydrogels and Semi-IPNs for Uranyl Ions. Polym.-Plast. Technol. Mater. 2012, 51, 1550-1561. https://doi.org/10.1080/03602559.2012.716132
https://doi.org/10.1080/03602559.2012.716132

[19] Uspenskaya, M.V.; Sitnikova, V.E.; Dovbeta, M.A.; Olekhnovich, R.O.; Denisyuk, I.Y. Sorption Properties of Clay and Pectin-Containing Hydrogels. Recent Res. Polym. 2018. https://doi.org/10.5772/intechopen.71190
https://doi.org/10.5772/intechopen.71190

[20] Katime, I.; Mendizábal, E. Swelling Properties of New Hydrogels Based on the Dimethyl Amino Ethyl Acrylate Methyl Chloride Quaternary Salt with Acrylic Acid and 2-Methylene Butane-1,4-Dioic Acid Monomers in Aqueous Solutions. Mater. Sci. Appl. 2010, 01, 162-167. https://doi.org/10.4236/msa.2010.13026
https://doi.org/10.4236/msa.2010.13026

[21] Sharma, S.; Dua, A.; Malik, A. Biocompatible Stimuli Responsive Superabsorbent Polymer for Controlled Release of GHK-Cu Peptide for Wound Dressing Application. J. Polym. Res. 2017, 24, 1-8. https://doi.org/10.1007/s10965-017-1254-z
https://doi.org/10.1007/s10965-017-1254-z

[22] Fosca, M.; Rau, J.V.; Uskoković, V. Factors Influencing the Drug Release from Calcium Phosphate Cements. Bioact. Mater. 2022, 7, 341-363. https://doi.org/10.1016/j.bioactmat.2021.05.032
https://doi.org/10.1016/j.bioactmat.2021.05.032

[23] Bukhari, S.M.H.; Khan, S.; Rehanullah, M.; Ranjha, N.M. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of PH and Composition on Swelling and Drug Release. Int. J. Polym. Sci. 2015, 2015, 1-15. https://doi.org/10.1155/2015/187961
https://doi.org/10.1155/2015/187961

[24] Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M.C.; Zhao, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep. 2014, 4, 4706. https://doi.org/10.1038/srep04706
https://doi.org/10.1038/srep04706

[25] Peppas, N.A.; Merrill, E.W. Poly(Vinyl Alcohol) Hydrogels: Reinforcement of Radiation‐crosslinked Networks by Crystallization. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 441-457. https://doi.org/10.1002/pol.1976.170140215
https://doi.org/10.1002/pol.1976.170140215

[26] Hoti, G.; Caldera, F.; Cecone, C.; Rubin Pedrazzo, A.; Anceschi, A.; Appleton, S.L.; Khazaei Monfared, Y.; Trotta, F. Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged β-Cyclodextrin Nanosponges. Materials (Basel) 2021, 14, 478. https://doi.org/10.3390/ma14030478
https://doi.org/10.3390/ma14030478