Enzymatic Degumming of Soybean, Rapeseed, and Sunflower Oils from Ukrainian Crops Using Purifine Enzymes

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Taras Havrak1, Andriy Karkhut1, Olha Poliak1, Yuriy Demchuk1, Yuriy Prysiazhnyi1, Yurii Lypko1, Iurii Sidun1, Andrii Semchuk1, Sviatoslav Polovkovych1, Volodymyr Gunka1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., Lviv 79013, Ukraine olha.y.poliak@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.04.761
AttachmentSize
PDF icon full_text.pdf302.51 KB
Abstract: 
This study investigates the efficiency of enzymatic degumming of crude soybean, rapeseed, and sunflower oils using Purifine® phospholipase C (PLC), phospholipase A1 (PLA₁), a lipase-modified component (LM), and the multienzyme complex Purifine® 3G (combining PLC, PLA₁, and LM activities), as well as their combinations. The primary objective is to achieve low residual phosphorus content (<5 ppm), which is essential for subsequent catalytic hydrotreatment in the production of hydrotreated vegetable oil (HVO) and for improving the efficiency of transesterification in the production of fatty acid methyl and ethyl esters (FAME/FAE). The degumming performance was evaluated based on the levels of phosphorus, sulfur, free fatty acids (FFA), and the dry mass of the gum phase. The highest efficiency was demonstrated by the Purifine® 3G system and the combination of PLC + PLA1 + LM, which provided deep purification, minimal loss of neutral oil, and stable FFA levels. Importantly, these enzymatic systems not only enabled residual phosphorus levels to be reduced below 5 ppm, but also significantly decreased sulfur content – from initial values of 60-100 ppm to final concentrations of 9-27 ppm, depending on the oil type. This sulfur reduction is particularly important for protecting hydrotreating catalysts and ensuring compliance with fuel standards such as EN 15940 and ASTM D975. The findings support the feasibility of enzymatic systems as a sustainable technology for the pretreatment of feedstocks for both second-generation (HVO) and first-generation (FAME) biofuel production, offering benefits in catalyst life, product purity, and process efficiency.
References: 

[1] Mussa, N.-S.; Toshtay, K.; Capron, M. Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review. Catalysts 2024, 14, 452. https://doi.org/10.3390/catal14070452
https://doi.org/10.3390/catal14070452

[2] Khamies, M.; Hagar, M.; Kassem, T. S.; Moustafa, A. H. E. Case Study of Chemical and Enzymatic Degumming Processes in Soybean Oil Production at an Industrial Plant. Sci. Rep. 2024, 14, 4064. https://doi.org/10.1038/s41598-024-53865-9
https://doi.org/10.1038/s41598-024-53865-9

[3] Cerminati, S.; Paoletti, L.; Aguirre, A.; Peirú, S.; Menzella, H. G.; Castelli, M. E. Industrial Uses of Phospholipases: Current State and Future Applications. Appl. Microbiol. Biotechnol. 2019, 103, 2571-2582. https://doi.org/10.1007/s00253-019-09658-6
https://doi.org/10.1007/s00253-019-09658-6

[4] Yang, B.; Wang, Y. H.; Yang, J. G. Optimization of Enzymatic Degumming Process for Rapeseed Oil. J. Am. Oil Chem. Soc. 2006, 83, 653-658. https://doi.org/10.1007/s11746-006-1253-4
https://doi.org/10.1007/s11746-006-1253-4

[5] Aloulou, A.; Rahier, R.; Arhab, Y.; Noiriel, A.; Abousalham, A. Phospholipases: An Overview. In Lipases and Phospholipases. Methods in Molecular Biology, vol 1835; Sandoval, G., Ed.; Humana Press: New York, NY, 2018; pp 69-105. https://doi.org/10.1007/978-1-4939-8672-9_3
https://doi.org/10.1007/978-1-4939-8672-9_3

[6] Dijkstra, A. J. Enzymatic Degumming. Eur. J. Lipid Sci. Technol. 2010, 112, 1178-1189. https://doi.org/10.1002/ejlt.201000320
https://doi.org/10.1002/ejlt.201000320

[7] Al Sharqi, S.; Dunford, N. T.; Goad, C. Enzymatic Wheat Germ Oil Degumming. Trans. ASABE 2015, 58, 1867-1872. https://doi.org/10.13031/trans.58.11032
https://doi.org/10.13031/trans.58.11032

[8] Jiang, X.; Chang, M.; Jin, Q.; Wang, X. Application of Phospholipase A1 and Phospholipase C in the Degumming Process of Different Kinds of Crude Oil. Process Biochem. 2015, 50, 432-437. https://doi.org/10.1016/j.procbio.2014.12.011
https://doi.org/10.1016/j.procbio.2014.12.011

[9] Luo, S.; Wang, W.; Zhang, H.; Liu, C.; Wang, N.; Wang, L.; Yu, D. A New Strategy for Magnetic Immobilized Phospholipase A1 and its Application in Soybean Oil Degumming: Multipoint Covalent Binding LWT 2023, 186, 115181. https://doi.org/10.1016/j.lwt.2023.115181
https://doi.org/10.1016/j.lwt.2023.115181

[10] Schaloske, R.H.; Dennis, E.A. The Phospholipase A2 Superfamily and its Group Numbering System. Biochim Biophys Acta 2006, 1761, 1246-1259. https://doi.org/10.1016/j.bbalip.2006.07.011
https://doi.org/10.1016/j.bbalip.2006.07.011

[11] dos Passos, R. M.; da Silva, R. M.; de Almeida Pontes, P. V.; Morgano, M. A.; Meirelles, A. J.; Stevens, C. V.; Sampaio, K. A. Phospholipase Cocktail: A New Degumming Technique for Crude Soybean Oil. LWT 2022, 159, 113197. https://doi.org/10.1016/j.lwt.2022.113197
https://doi.org/10.1016/j.lwt.2022.113197

[12] Mansfeld, J. Plant Phospholipases A2: Perspectives on Biotechnological Applications. Biotechnol Lett. 2009, 31, 1373-1380. http://dx.doi.org/10.1007/s10529-009-0034-1
https://doi.org/10.1007/s10529-009-0034-1

[13] Manjula, S.; Jose, A.; Divakar, S.; Subramanian, R. Degumming Rice Bran Oil Using Phospholipase-A1. Eur. J. Lipid Sci. Technol. 2011, 113, 658-664. https://doi.org/10.1002/ejlt.201000376
https://doi.org/10.1002/ejlt.201000376

[14] Jahani, M.; Alizadeh, M.; Pirozifard, M.; Qudsevali, A. Optimization of Enzymatic Degumming Process for Rice Brain Oil Using Response Surface Methodology. LWT - Food Sci. Technol. 2008, 41, 1892-1898. http://dx.doi.org/10.1016/j.lwt.2007.12.007
https://doi.org/10.1016/j.lwt.2007.12.007

[15] Lamas, D. L.; Crapiste, G. H.; Constenla, D. T. Changes in Quality and Composition of Sunflower Oil During Enzymatic Degumming Process. LWT - Food Sci. Technol. 2014, 58, 71-76. https://doi.org/10.1016/j.lwt.2014.02.024
https://doi.org/10.1016/j.lwt.2014.02.024

[16] Lamas, D. L.; Constenla, D. T.; Raab, D. Effect of Degumming Process on Physicochemical Properties of Sunflower Oil. Biocatal. Agric. Biotechnol. 2016, 6, 138-143. https://doi.org/10.1016/j.bcab.2016.03.007
https://doi.org/10.1016/j.bcab.2016.03.007

[17] Nikolaeva, T.; Rietkerk, T.; Sein, A.; Dalgliesh, R.; Bouwman, W. G.; Velichko, E.; van Duynhoven, J. Impact of Water Degumming and Enzymatic Degumming on Gum Mesostructure Formation in Crude Soybean Oil. Food Chem. 2020, 311, 126017. https://doi.org/10.1016/j.foodchem.2019.126017
https://doi.org/10.1016/j.foodchem.2019.126017

[18] Marrakchi, F.; Kriaa, K.; Hadrich, B.; Kechaou, N. Experimental Investigation of Processing Parameters and Effects of Degumming, Neutralization and Bleaching on Lampante Virgin Olive Oil's Quality. Food Bioprod. Process. 2015, 94, 124-135. https://doi.org/10.1016/j.fbp.2015.02.002
https://doi.org/10.1016/j.fbp.2015.02.002

[19] Yang, B.; Zhou, R.; Yang, J. G. Insight into the Enzymatic Degumming Process of Soybean Oil. J. Am. Oil Chem. Soc. 2008, 85, 421-425. https://doi.org/10.1007/s11746-008-1225-y
https://doi.org/10.1007/s11746-008-1225-y

[20] Roy, S. K.; Rao, B. V. S. K.; Prasad, R. B. N. Enzymatic Degumming of Rice Bran Oil. J. Am. Oil Chem. Soc. 2002, 79, 845-846. http://dx.doi.org/10.1007/s11746-002-0568-5
https://doi.org/10.1007/s11746-002-0568-5

[21] Clausen, K. Enzymatic Oil-Degumming by a Novel Microbial Phospholipase. Eur. J. Lipid Sci. Technol. 2001, 103, 333-340. https://doi.org/10.1002/1438-9312(200106)103:6<333::AID-EJLT333>3.0.CO;2-F
https://doi.org/10.1002/1438-9312(200106)103:6<333::AID-EJLT333>3.0.CO;2-F

[22] Sampaio, K. A.; Zyaykina, N.; Wozniak, B.; Tsukamoto, J.; Greyt, W. D.; Stevens, C. V. Enzymatic Degumming: Degumming Efficiency Versus Yield Increase. Eur. J. Lipid Sci. Technol. 2015, 117, 81-86. https://doi.org/10.1002/ejlt.201400218
https://doi.org/10.1002/ejlt.201400218

[23] de Sousa, R. R. D.; dos Santos, M. M.; Medeiros, M. W.; Manoel, E. A.; Berenguer-Murcia, Á.; Freire, D. M. G.; Ferreira-Leitão, V. S. Immobilized Lipases in the Synthesis of Short-Chain Esters: An Overview of Constraints and Perspectives. Catalysts 2025, 15, 375. https://doi.org/10.3390/catal15040375
https://doi.org/10.3390/catal15040375

[24] Bolivar, J. M.; Woodley, J. M.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251-6290. https://doi.org/10.1039/d2cs00083k
https://doi.org/10.1039/D2CS00083K

[25] Gupta, M. N.; Uversky, V. N. Enzymology: early insights. In Structure and Intrinsic Disorder in Enzymology; Academic Press, 2023; pp 1-29. https://doi.org/10.1016/B978-0-323-99533-7.00013-3
https://doi.org/10.1016/B978-0-323-99533-7.00013-3

[26] Polovkovych, S.; Karkhut, A.; Gunka, V.; Blikharskyy, Y.; Nebesnyi, R.; Khomyak, S.; Selejdak, J.; Blikharskyy, Z. Enzymatic Degumming of Soybean Oil for Raw Material Preparation in BioFuel Production. Appl. Sci. 2025, 15, 8371. https://doi.org/10.3390/app15158371
https://doi.org/10.3390/app15158371

[27] DSTU EN ISO 3675:2012. Crude petroleum and liquid petroleum products. Laboratory determination of density. Hydrometer method.

[28] DSTU EN ISO 3104:2022. Petroleum products. Transparent and opaque liquids. Determination of kinematic viscosity and calculation of dynamic viscosity.

[29] DSTU ISO 2719:2006. Determination of flash point. Pensky. Martens closed cup method.

[30] DSTU ISO 20846:2009. Petroleum products. Determination of sulfur content of automotive fuels. Ultraviolet fluorescence method.

[31] DSTU 7082:2009. Vegetable oils. Methods for determination of mass concentration phosphorated content.

[32] DSTU EN ISO 8534:2019. Animal and vegetable fats and oils. Determination of water content. Karl Fischer method (pyridine free).

[33] DSTU EN ISO 2160:2012. Petroleum products. Corrosiveness to copper. Copper strip test.

[34] DSTU EN 14104:2009. Fat and oil derivates. Fatty acid methyl ester (FAME). Determination of acid value.

[35] DSTU EN ISO 3961:2019. Animal and vegetable fats and oils. Determination of iodine value.