Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Development of High-Strength Bioactive Glass-Ceramic Materials for the Reconstruction of Long Bone Defects

Oksana Savvova1, Olena Babich1, Oleksii Fesenko1, Valentyna Maltseva2, Serhii Firsov1, Tetiana Shkolnikova3
Affiliation: 
1 Department of Chemistry and Integrated Technologies, O.M. Beketov National University of Urban Economy in Kharkiv, 17 Chornoglazivska St., Kharkiv 61002, Ukraine 2 Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology, National Academy of Medical Sciences of Ukraine, 80 Hryhoriia Skovorody St., Kharkiv 61024, Ukraine 3 Department of General and Inorganic Chemistry, National Technical University «Kharkiv Polytechnic Institute», 2 Kyrpychova St.,61002 Kharkiv, Ukraine Olena.Babich@kname.edu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf814.85 KB
Abstract: 
The critical need for the restoration of the human musculoskeletal system, damaged due to osteoporosis, blast injuries, and congenital anomalies, has been identified. The needs of regenerative medicine aimed at the maximum possible restoration of the structure and functions of damaged tissues have been outlined. The necessity for the development of bioactive materials to substitute long bone defects through the creation of glass-ceramic materials with high biological activity and mechanical strength has been established. High-strength glass-ceramic materials have been developed through rapid low-temperature thermal treatment. These materials are characterized by the presence of bioactive phases such as hydroxyapatite and lithium phosphate, spodumene, eucryptite, diopside, and lithium disilicate. They can withstand significant mechanical (compressive strength 550–650 MPa, bending strength 350–450 MPa, fracture toughness 4.5–6.1 MPa•m0.5) and thermal (CTE = (40.5–79.2)•10-7°С-1) loads and are promising candidates for use as substitutes for bone tissue in long bone elements.
References: 

[1] Li, M.; Yu, B.; Yang, H; He, H. Trends and Hotspots in Research on Osteoporosis and Nutrition from 2004 to 2024: A Bibliometric Analysis. J. Health Popul. Nutr. 2024, 43, 204. https://doi.org/10.1186/s41043-024-00690-5
[2] Anish, R.J.; Nair, A. Osteoporosis Management-Current and Future Perspectives - A Systemic Review. J. Orthop. 2024, 2, 101–113. https://doi.org/10.1016/j.jor.2024.03.002
[3] Dussault, M.C.; Smith, M.; Osselton, D. Blast Injury and the Human Skeleton: An Important Emerging Aspect of Conflict-Related Trauma. J. Forensic Sci. 2014, 59, 606–612. https://doi.org/10.1111/1556-4029.12361
[4] Kluger, Y.; Bahouth, H.; Harbi, A. Blast Injuries: Tips, Evaluation, and Management. In Emergency Medicine.Trauma and Disaster Management; Pikoulis, E.; Doucet, J. (eds); Springer, Cham. 2021; pp 289–297. https://doi.org/10.1007/978-3-030-34116-9_21
[5] Burianov, O.; Kvasha, V.; Sobolevskiy, Y.; Yarmoliuk, Y.; Klapchuk, Y.; Los, D.; Kuprii, V.; Kolov, G. Methodological Principles of Diagnosis Verification and Treatment Tactics Determination in Combat Limb Injuries with Bone Defects. Orthopaedics Traumatology and Prosthetics 2024, 4, 5–13. https://doi.org/10.15674/0030-5987202345-13
[6] Lurin, I.; Burianov, O.; Yarmolyuk, Y.; Klapchuk, Y.; Derkach, S.; Gorobeiko, M.; Dinets, A. Management of Severe Defects of Humerus in Combat Patients Injured in Russo-Ukrainian War. Injury 2024, 55, 111280. https://doi.org/10.1016/j.injury.2023.111280
[7] Hrytsai, M.P.; Kolov, H.B.; Sabadosh, V.I.; Vyderko, R.V.; Polovyi, A.S.; Нutsailiuk, V.I. Osnovni khirurhichni metody zamishchennia krytychnykh kistkovykh defektiv velykohomilkovoi kistky. (Ohliad literatury). TERRA ORTHOPAEDICA 2024, 2, 45–53. https://doi.org/10.37647/2786-7595-2024-121-2-45-53
[8] Yu, H.; Liu, H.; Shen, Y.; Ao, Q. Synthetic Biodegradable Polymer Materials in the Repair of Tumor-Associated Bone Defects. Front. Bioeng. Biotechnol. 2023, 16, 1096525. https://doi.org/10.3389/fbioe.2023.1096525
[9] Elshazly, N.; Eid Nasr, F.; Hamdy, A.; Saied, S.; Elshazly, M. Advances in Clinical Applications of Bioceramics in the New Regenerative Medicine Era. World Journal of Clinical Cases 2024, 16, 1863–1869. https://doi.org/10.12998/wjcc.v12.i11.1863
[10] Zhang, M.; Matinlinna, J.P.; Tsoi, J.K.H; Liu, W; Cui, X.; Lu, W.W.; Pan, H. Recent Developments in Biomaterials for Long-Bone Segmental Defect Reconstruction: A Narrative Overview. J. Orthop. Translat. 2019, 22, 26–33. https://doi.org/10.1016/j.jot.2019.09.005
[11] Barreto, M.E.V.; Medeiros, R.P.; Shearer, A.; Mauro, J.C. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J. Funct. Biomater. 2023, 14, 23. https://doi.org/10.3390/jfb14010023
[12] Guo, A. X.Y.; Cheng, L.; Zhan, S.; Zhang, S.; Xiong, W.; Wang, Z.; Wang, G.; Cao, S. C. Biomedical Applications of the Powder‐Based 3D Printed Titanium Alloys: A Review. J. Mater. Sci. Technol. 2022, 125, 252–264. https://doi.org/10.1016/j.jmst.2021.11.084
[13] Correa-Araujo, L.; Lara Bertrand, A.; Silva-Cote, I. Tissue Engineering Scaffolds: The Importance of Collagen. In Cell and Molecular Biology; Mary C. Maj, M.C.; and Felicia Ikolo, F., Eds.; 2024. https://doi.org/10.5772/intechopen.1004077
[14] Diedkova, K.; Pogrebnjak, A.D.; Kyrylenko, S.; Smyrnova, K.; Buranich, V.V.; Horodek, P.; Zukowski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Makashina, K.; et al. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Appl. Mater. Interfaces. 2023, 15, 14033–14047. https://doi.org/10.1021/acsami.2c22780
[15] Samokhin, Y.; Varava, Y.; Diedkova, K.; Yanko, I.; Husak, Y.; Radwan-Pragłowska, J.; Pogorielova, O.; Janus, Ł.; Pogorielov, M.; Korniienko, V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J. Funct. Biomater. 2023, 14, 414. https://doi.org/10.3390/jfb14080414
[16] Qin, H.; Wei, Y.; Han, J.; Jiang X.; Yang, X.; Wu, Y.; Gou, Z.; Chen, L. 3D printed Bioceramic Scaffolds: Adjusting Pore Dimension is Beneficial for Mandibular Bone Defects Repair. J. Tissue Eng. Regen. Med. 2022, 16, 409–421. https://doi.org/10.1002/term.3287
[17] Kamboj, N.; Ressler, A.; Hussainova, I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. Materials 2021, 14, 5338. https://doi.org/10.3390/ma14185338
[18] Kędzia, O.; Lubas, M.; Dudek, A. Glass and Glass-Ceramic Porous Materials for Biomedical Applications. System Safety: Human - Technical Facility - Environment. 2023, 5, 302–310. https://doi.org/10.2478/czoto-2023-0033
[19] Aalto-Setälä, L.; Siekkinen, M.; Lindfors, N.; Hupa, L. Dissolution of Glass–Ceramic Scaffolds of Bioactive Glasses 45S5 and S53P4. Biomedical Materials & Devices 2022, 1, 871–88. https://doi.org/10.1007/s44174-022-00059-4
[20] Workie, A.B.; Shih, S.J. A study of Bioactive Glass-Ceramic's Mechanical Properties, Apatite Formation, and Medical Applications. RSC Adv. 2022, 16, 23143–23152. https://doi.org/10.1039/d2ra03235j
[21] Da Fonte Ferreira, J. M.; Goel A. Bioactive Glass Composition, its Applications and Respective Preparation Methods. US 20140193499A1, April 5, 2012.
[22] Savvova, O.V.; Shimon, V.M.; Babich, O.V.; Fesenko, O.I. Development of Calcium Phosphate-Silicate Glass Ceramic Materials Resistant to Biochemical and Mechanical Destruction. Funct. Mater. 2020, 27, 767–773. https://doi.org/10.15407/FM27.04.767
[23] Savvova, O.; Shadrina, G.; Babich, O.; Fesenko, O. Investigation of Surface Free Energy of Glass-Ceramic Coatings on Titanium for Medical Purposes. Chem. Chem. Technol. 2015, 9, 349–354. https://doi.org/10.23939/chcht09.03.349
[24] Savvova, O. Biocide Apatite Glass-Ceramic Materials for Bone Endoprosthetics. Chem. Chem. Technol. 2013, 7, 109–112. https://doi.org/10.23939/chcht07.01.109
[25] Kirste, G.; Contreras Jaimes A.; de Pablos-Martín, A.; de Souza e Silva, J.M.; Massera, J.; Hill, R.G.; Brauer, D.S. Bioactive Glass–Ceramics Containing Fluorapatite, Xonotlite, Cuspidine and Wollastonite form Apatite Faster than their Corresponding Glasses. Sci. Rep. 2024, 14, 3997. https://doi.org/10.1038/s41598-024-54228-0
[26] Piatti E.; Miola M.; Verné E. Tailoring of Bioactive Glass and Glass-Ceramics Properties for in vitro and in vivo Response Optimization: A Review. Biomater. Sci. 2024, 12, 4546–4589. https://doi.org/10.1039/D3BM01574B
[27] Bartl, R.; Bartl, C. Structure and Architecture of Bone. In The Osteoporosis Manual; Springer, 2019; pp. 9–19. https://doi.org/10.1007/978-3-030-00731-7_2
[28] Cowan, P.T.; Launico, M.V.; Kahai, P. Anatomy, Bones; StatPearls Publishing, 2025.
[29] Guimarães, C.F.; Gasperini, L.; Marques, A.P.; Reis R. L. The Stiffness of Living Tissues and its Implications for Tissue Engineering. Nat. Rev. Mater. 2020, 5, 351–370. https://doi.org/10.1038/s41578-019-0169-1
[30] Savvova, O.V.; Fesenko, O.I.; Voronov, H.K.; Babich, O.V.; Bitiutska, V.V.; Smyrnova, Yu.O.; Hopko, A.O. Study of Mineralization of Lithium Calcium Phosphosilicate Glass Ceramics in vivo During Bone Tissue Regeneration. Voprosy khimii i khimicheskoi tekhnologii 2023, 4, 83–93. https://doi.org/10.32434/0321-4095-2023-149-4-83-93
[31] Savvova, O.; Fesenko, O.; Babich, O.; Voronov, H.; Smyrnova, Yu. Features of the Apatite-Like Layer Formation on the Surface of Bioactive Glass-Ceramic Materials in vivo. Funct. Mater. 2023, 30, 187–196. https://doi.org/10.15407/fm30.02.187
[32] Gerhardt, L.C.; Boccaccini, A.R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials (Basel) 2010, 6, 3867–3910. https://doi.org/10.3390/ma3073867
[33] Singh Ranu, H. Thermal Properties of Human Cortical Bone: An in vitro Study. Engineering in Medicine 1987, 16, 175–176. https://doi.org/10.1243/EMED_JOUR_1987_016_036_02