Development of High-Strength Bioactive Glass-Ceramic Materials for the Reconstruction of Long Bone Defects
| Attachment | Size |
|---|---|
| 814.85 KB |
Keywords:
[1] Li, M.; Yu, B.; Yang, H; He, H. Trends and Hotspots in Research on Osteoporosis and Nutrition from 2004 to 2024: A Bibliometric Analysis. J. Health Popul. Nutr. 2024, 43, 204. https://doi.org/10.1186/s41043-024-00690-5
[2] Anish, R.J.; Nair, A. Osteoporosis Management-Current and Future Perspectives - A Systemic Review. J. Orthop. 2024, 2, 101–113. https://doi.org/10.1016/j.jor.2024.03.002
[3] Dussault, M.C.; Smith, M.; Osselton, D. Blast Injury and the Human Skeleton: An Important Emerging Aspect of Conflict-Related Trauma. J. Forensic Sci. 2014, 59, 606–612. https://doi.org/10.1111/1556-4029.12361
[4] Kluger, Y.; Bahouth, H.; Harbi, A. Blast Injuries: Tips, Evaluation, and Management. In Emergency Medicine.Trauma and Disaster Management; Pikoulis, E.; Doucet, J. (eds); Springer, Cham. 2021; pp 289–297. https://doi.org/10.1007/978-3-030-34116-9_21
[5] Burianov, O.; Kvasha, V.; Sobolevskiy, Y.; Yarmoliuk, Y.; Klapchuk, Y.; Los, D.; Kuprii, V.; Kolov, G. Methodological Principles of Diagnosis Verification and Treatment Tactics Determination in Combat Limb Injuries with Bone Defects. Orthopaedics Traumatology and Prosthetics 2024, 4, 5–13. https://doi.org/10.15674/0030-5987202345-13
[6] Lurin, I.; Burianov, O.; Yarmolyuk, Y.; Klapchuk, Y.; Derkach, S.; Gorobeiko, M.; Dinets, A. Management of Severe Defects of Humerus in Combat Patients Injured in Russo-Ukrainian War. Injury 2024, 55, 111280. https://doi.org/10.1016/j.injury.2023.111280
[7] Hrytsai, M.P.; Kolov, H.B.; Sabadosh, V.I.; Vyderko, R.V.; Polovyi, A.S.; Нutsailiuk, V.I. Osnovni khirurhichni metody zamishchennia krytychnykh kistkovykh defektiv velykohomilkovoi kistky. (Ohliad literatury). TERRA ORTHOPAEDICA 2024, 2, 45–53. https://doi.org/10.37647/2786-7595-2024-121-2-45-53
[8] Yu, H.; Liu, H.; Shen, Y.; Ao, Q. Synthetic Biodegradable Polymer Materials in the Repair of Tumor-Associated Bone Defects. Front. Bioeng. Biotechnol. 2023, 16, 1096525. https://doi.org/10.3389/fbioe.2023.1096525
[9] Elshazly, N.; Eid Nasr, F.; Hamdy, A.; Saied, S.; Elshazly, M. Advances in Clinical Applications of Bioceramics in the New Regenerative Medicine Era. World Journal of Clinical Cases 2024, 16, 1863–1869. https://doi.org/10.12998/wjcc.v12.i11.1863
[10] Zhang, M.; Matinlinna, J.P.; Tsoi, J.K.H; Liu, W; Cui, X.; Lu, W.W.; Pan, H. Recent Developments in Biomaterials for Long-Bone Segmental Defect Reconstruction: A Narrative Overview. J. Orthop. Translat. 2019, 22, 26–33. https://doi.org/10.1016/j.jot.2019.09.005
[11] Barreto, M.E.V.; Medeiros, R.P.; Shearer, A.; Mauro, J.C. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J. Funct. Biomater. 2023, 14, 23. https://doi.org/10.3390/jfb14010023
[12] Guo, A. X.Y.; Cheng, L.; Zhan, S.; Zhang, S.; Xiong, W.; Wang, Z.; Wang, G.; Cao, S. C. Biomedical Applications of the Powder‐Based 3D Printed Titanium Alloys: A Review. J. Mater. Sci. Technol. 2022, 125, 252–264. https://doi.org/10.1016/j.jmst.2021.11.084
[13] Correa-Araujo, L.; Lara Bertrand, A.; Silva-Cote, I. Tissue Engineering Scaffolds: The Importance of Collagen. In Cell and Molecular Biology; Mary C. Maj, M.C.; and Felicia Ikolo, F., Eds.; 2024. https://doi.org/10.5772/intechopen.1004077
[14] Diedkova, K.; Pogrebnjak, A.D.; Kyrylenko, S.; Smyrnova, K.; Buranich, V.V.; Horodek, P.; Zukowski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Makashina, K.; et al. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Appl. Mater. Interfaces. 2023, 15, 14033–14047. https://doi.org/10.1021/acsami.2c22780
[15] Samokhin, Y.; Varava, Y.; Diedkova, K.; Yanko, I.; Husak, Y.; Radwan-Pragłowska, J.; Pogorielova, O.; Janus, Ł.; Pogorielov, M.; Korniienko, V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J. Funct. Biomater. 2023, 14, 414. https://doi.org/10.3390/jfb14080414
[16] Qin, H.; Wei, Y.; Han, J.; Jiang X.; Yang, X.; Wu, Y.; Gou, Z.; Chen, L. 3D printed Bioceramic Scaffolds: Adjusting Pore Dimension is Beneficial for Mandibular Bone Defects Repair. J. Tissue Eng. Regen. Med. 2022, 16, 409–421. https://doi.org/10.1002/term.3287
[17] Kamboj, N.; Ressler, A.; Hussainova, I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. Materials 2021, 14, 5338. https://doi.org/10.3390/ma14185338
[18] Kędzia, O.; Lubas, M.; Dudek, A. Glass and Glass-Ceramic Porous Materials for Biomedical Applications. System Safety: Human - Technical Facility - Environment. 2023, 5, 302–310. https://doi.org/10.2478/czoto-2023-0033
[19] Aalto-Setälä, L.; Siekkinen, M.; Lindfors, N.; Hupa, L. Dissolution of Glass–Ceramic Scaffolds of Bioactive Glasses 45S5 and S53P4. Biomedical Materials & Devices 2022, 1, 871–88. https://doi.org/10.1007/s44174-022-00059-4
[20] Workie, A.B.; Shih, S.J. A study of Bioactive Glass-Ceramic's Mechanical Properties, Apatite Formation, and Medical Applications. RSC Adv. 2022, 16, 23143–23152. https://doi.org/10.1039/d2ra03235j
[21] Da Fonte Ferreira, J. M.; Goel A. Bioactive Glass Composition, its Applications and Respective Preparation Methods. US 20140193499A1, April 5, 2012.
[22] Savvova, O.V.; Shimon, V.M.; Babich, O.V.; Fesenko, O.I. Development of Calcium Phosphate-Silicate Glass Ceramic Materials Resistant to Biochemical and Mechanical Destruction. Funct. Mater. 2020, 27, 767–773. https://doi.org/10.15407/FM27.04.767
[23] Savvova, O.; Shadrina, G.; Babich, O.; Fesenko, O. Investigation of Surface Free Energy of Glass-Ceramic Coatings on Titanium for Medical Purposes. Chem. Chem. Technol. 2015, 9, 349–354. https://doi.org/10.23939/chcht09.03.349
[24] Savvova, O. Biocide Apatite Glass-Ceramic Materials for Bone Endoprosthetics. Chem. Chem. Technol. 2013, 7, 109–112. https://doi.org/10.23939/chcht07.01.109
[25] Kirste, G.; Contreras Jaimes A.; de Pablos-Martín, A.; de Souza e Silva, J.M.; Massera, J.; Hill, R.G.; Brauer, D.S. Bioactive Glass–Ceramics Containing Fluorapatite, Xonotlite, Cuspidine and Wollastonite form Apatite Faster than their Corresponding Glasses. Sci. Rep. 2024, 14, 3997. https://doi.org/10.1038/s41598-024-54228-0
[26] Piatti E.; Miola M.; Verné E. Tailoring of Bioactive Glass and Glass-Ceramics Properties for in vitro and in vivo Response Optimization: A Review. Biomater. Sci. 2024, 12, 4546–4589. https://doi.org/10.1039/D3BM01574B
[27] Bartl, R.; Bartl, C. Structure and Architecture of Bone. In The Osteoporosis Manual; Springer, 2019; pp. 9–19. https://doi.org/10.1007/978-3-030-00731-7_2
[28] Cowan, P.T.; Launico, M.V.; Kahai, P. Anatomy, Bones; StatPearls Publishing, 2025.
[29] Guimarães, C.F.; Gasperini, L.; Marques, A.P.; Reis R. L. The Stiffness of Living Tissues and its Implications for Tissue Engineering. Nat. Rev. Mater. 2020, 5, 351–370. https://doi.org/10.1038/s41578-019-0169-1
[30] Savvova, O.V.; Fesenko, O.I.; Voronov, H.K.; Babich, O.V.; Bitiutska, V.V.; Smyrnova, Yu.O.; Hopko, A.O. Study of Mineralization of Lithium Calcium Phosphosilicate Glass Ceramics in vivo During Bone Tissue Regeneration. Voprosy khimii i khimicheskoi tekhnologii 2023, 4, 83–93. https://doi.org/10.32434/0321-4095-2023-149-4-83-93
[31] Savvova, O.; Fesenko, O.; Babich, O.; Voronov, H.; Smyrnova, Yu. Features of the Apatite-Like Layer Formation on the Surface of Bioactive Glass-Ceramic Materials in vivo. Funct. Mater. 2023, 30, 187–196. https://doi.org/10.15407/fm30.02.187
[32] Gerhardt, L.C.; Boccaccini, A.R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials (Basel) 2010, 6, 3867–3910. https://doi.org/10.3390/ma3073867
[33] Singh Ranu, H. Thermal Properties of Human Cortical Bone: An in vitro Study. Engineering in Medicine 1987, 16, 175–176. https://doi.org/10.1243/EMED_JOUR_1987_016_036_02