Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Combined Composites Based on Polylactide 3d Matrices and Modified Epoxy Resins

Volodymyr Levytskyi1, Diana Katruk1, Andrii Masiuk1, Dmytro Kechur1, Yurii Laruk1, Artem Davydovych1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., Lviv 79013, Ukraine diana.s.katruk@lpnu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf542.86 KB
Abstract: 
Materials based on polylactide 3D matrices with their subsequent filling with modified epoxy resin were developed. Their elastoplastic, deformation, and strength characteristics were investigated. It was found that the filling plane of the studied products significantly affects the values of deformation and hardness. The introduction of epoxidized soybean oil into the composition improves the impact strength of the composites, increasing the flexibility of the material and increasing its ability to absorb and dissipate energy under impact loads. The combined composites are characterised by increased flexural strength, tensile strength, and flexural strain.
References: 

[1] Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. https://doi.org/10.3390/s24092668
[2] Gulnaaz, R.; Abhinav, S.; Karan, S. Additive Manufacturing - A Review. Mater. Today: Proc. 2021, 47, 6896–6901. https://doi.org/10.1016/j.matpr.2021.05.181
[3] Chiujdea, C.; Cananau, S. A Review of Additive Manufacturing Technologies. J. Res. Innov. Sustain. Soc. 2021, 3, 25–32. https://doi.org/10.33727/JRISS.2021.1.4:25-32
[4] Wang, Z.; Yang, Y. Application of 3D Printing in Implantable Medical Devices. Biomed. Res. Int. 2021, 2021, 6653967. https://doi.org/10.1155/2021/6653967
[5] Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074
[6] Stava, O.; Vanek, J.; Benes, B.; Carr, N.; Mch, R. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 2012, 31, 48. https://doi.org/10.1145/2185520.2185544
[7] Hossain, M.S.; Ramos, J.; Espalin, D.; Perez, M.; Wicker, R. In: International solid freeform fabrication symposium: an additive manufacturing conference; University of Texas, Austin, 2013, 380–392.
[8] Belter, J.T.; Dollar, A.M. Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique. PLoS ONE 2015, 10, e0122915. https://doi.org/10.1371/journal.pone.0122915
[9] Hsissou, R.; Bekhta, A.; Khudhair, M.; Berradi, M.; El-Aouni, N.; Elharf, A. Review on Epoxy Polymers Composites with Improved Properties. J. Chem. Technol. Metall. 2019, 54, 1128–1136.
[10] Wang, Y.; Li, H.; Wang, X.; Lei, H.; Huo, J. Chemical Modification of Starch with Epoxy Resin to Enhance the Interfacial Adhesion of Epoxy-Based Glass Fiber Composites. RSC Adv. 2016, 6, 84187–84193. https://doi.org/10.1039/c6ra18347f
[11] Sanjay, M.R.; Arpitha, G.R.; Laxmana, N.L.; Gopalakrishna, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016, 7, 108–114. https://doi.org/10.4236/nr.2016.73011
[12] Oliver, W.C.; Pharr, G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19, 3–20. https://doi.org/10.1557/jmr.2004.19.1.3
[13] Malzbender, J.; de With, G. Indentation Load–Displacement Curve, Plastic Deformation, and Energy. J. Mater. Res. 2002, 17, 502–511. https://doi.org/10.1557/JMR.2002.0070
[14] Levytskyi, V.; Katruk, D.; Masyuk, A.; Bratychak, M.; Chopyk, N. The Effect of Poly(Vinyl Chloride) Modifier and Filler Nature on Properties of Polyester Composites. Chem. Chem. Technol. 2018, 12, 53–57. https://doi.org/10.23939/chcht12.01.053
[15] Katruk, D.; Levytskyi, V.; Khromyak, U.; Moravskyi, V.; Masyuk, A. Physicochemical Principles of Synthesis and Modification of Unsaturated Polyester–Polyvinyl Chloride Composites and the Properties of Materials. Int. J. Polym. Sci. 2019, 2019, 2547384. https://doi.org/10.1155/2019/2547384
[16] Levyts'kyi, V.E.; Masyuk, A.S.; Samoilyuk, D.S.; Bilyi, L.M.; Humenets'kyi, T.V. Morphology and Properties of Polymer–Silicate Composites. Mater. Sci. 2016, 52, 17–24. https://doi.org/10.1007/s11003-016-9921-5
[17] Levytskyi, V.; Katruk, D.; Masyuk, A.; Kysil, Kh.; Bratychak Jr., M.; Chopyk N. Resistance of polylactide materials to water mediums of the various natures. Chem. Chem. Technol. 2021, 15, 191–197. https://doi.org/10.23939/chcht15.02.191
[18] Masiuk, S.; Levytskyi, V.Y.; Bilyi, L.M.; Levytskyi, B.V.; Humenetsky, T.V. Regularities of Preparing Highly Adhesive Filled Polymermonomer Compositions. Mater. Sci. 2024, 60, 104–107. https://doi.org/10.1007/s11003-024-00859-7
[19] Levyts'kyi, V.E.; Masyuk, A.S.; Bialopiotrowicz, T. Morphology and Properties of Thermoplastic Composites with Modified Silicate Fillers. Mater. Sci. 2018, 54, 48–54. https://doi.org/10.1007/s11003-018-0157-4
[20] Masyuk, A.S.; Levytskyi, V.E.; Kysil, K.V.; Bilyi, L.M.; Humenetskyi, T.V. Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Mater. Sci. 2021, 56, 870–876. https://doi.org/10.1007/s11003-021-00506-5