Waste Food Oils as Components of Eco-Friendly Grease
Attachment | Size |
---|---|
full_text.pdf | 493.64 KB |
[1] Pinheiro, C.T.; Quina, M.J.; Gando-Ferreira, L.M. Management of Waste Lubricant Oil in Europe: A Circular Economy Approach. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2015-2050. https://doi.org/10.1080/10643389.2020.1771887
https://doi.org/10.1080/10643389.2020.1771887
[2] Monier, V.; Labouze, E. Critical Review of Existing Studies and Life Cycle Analysis on the Regeneration and Incineration of Waste Oils. European Commission. DG Environment A2 - Sustainable Resources Consumption and Waste. France, 2001. https://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf (accessed 2022-04-21).
[3] Stahl, H.; Merz C. Study to Support the Commission in Gathering Structured Information and Defining of Reporting Obligations on Waste Oils and Other Hazardous Waste. Luxembourg: Publications Office of the European Union, 2020. https://doi.org/10.2779/14834. https://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f... (accessed 2022-04-21).
[4] Bodachivska, L.Yu.; Verba, A.Yu.; Safronov, O.I.; Davitadze, D.Z.; Papeikin, O.O.; Venger, I.O. Surfactants Based on Lipoid Biomass and their Use in Technological Systems for Gas and Crude Oil Production. Catalysis and Petrochemistry 2019, 28, 1-19. https://doi.org/10.15407/kataliz2019.28.001
https://doi.org/10.15407/kataliz2019.28.001
[5] Li, W.; Wang, X. Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties J. Oleo Sci. 2015, 64, 367-374. https://doi.org/10.5650/jos.ess14235
https://doi.org/10.5650/jos.ess14235
[6] Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of Homogeneous Catalysts on Ring Opening Reactions of Epoxidized Cooking Oils. J. Clean. Prod. 2019, 230, 162-169. https://doi.org/10.1016/j.jclepro.2019.05.096
https://doi.org/10.1016/j.jclepro.2019.05.096
[7] Kukana, R.; Jakhar, O.P. An Appraisal on Enablers for Enhancement of Waste Cooking Oil-Based Biodiesel Production Facilities Using the Interpretative Structural Modeling Approach. Biotechnol. Biofuels Bioprod. 2021, 14, 213. https://doi.org/10.1186/s13068-021-02061-2
https://doi.org/10.1186/s13068-021-02061-2
[8] Orjuela, A; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. https://doi.org/10.1016/j.cogsc.2020.100369
https://doi.org/10.1016/j.cogsc.2020.100369
[9] Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. https://doi.org/10.3390/pr8030366
https://doi.org/10.3390/pr8030366
[10] Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning Waste Cooking Oils into Biofuels-Valorization Technologies: A Review. Energies 2022, 15, 116. https://doi.org/10.3390/en15010116
https://doi.org/10.3390/en15010116
[11] Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K., Jhalani, A. A Comprehensive Review of Biodiesel Production from Waste Cooking Oil and its Use as Fuel in Compression Ignition Engines: 3rd Generation Cleaner Feedstock. J. Clean. Prod. 2021, 307, 127299. https://doi.org/10.1016/j.jclepro.2021.127299
https://doi.org/10.1016/j.jclepro.2021.127299
[12] Sharma, P.; Usman, M.; Salama, E.-S.; Redina, M.; Thakur, N.; Li, X. Evaluation of Various Waste Cooking Oils for Biodiesel Production: A Comprehensive Analysis of Feedstock. Waste Man-age. 2021, 136, 219-229. https://doi.org/10.1016/j.wasman.2021.10.022
https://doi.org/10.1016/j.wasman.2021.10.022
[13] Hosseinzadeh-Bandbafha, H.; Li, Ch.; Chen, X.; Peng, W.; Aghbashlo, M.; Lam, S.Sh.; Tabatabaei, M. Managing the Hazardous Waste Cooking Oil by Conversion into Bioenergy Through the Application of Waste-Derived Green Catalysts: A Review. J. Hazard. Mater. 2022, 424, 127636. https://doi.org/10.1016/j.jhazmat.2021.127636
https://doi.org/10.1016/j.jhazmat.2021.127636
[14] Buchori, L.; Anggoro, D.D.; Ma'ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583
https://doi.org/10.23939/chcht15.04.583
[15] Lubricant Substance Classification list (LuSC-list). Version date: 17/02/2022. https://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200... (accessed 2022-04-21).
[16] Ardai, R. Environmentally Acceptable Lithium Complex Grease for a Wide Temperature Range. NLGI Spokesman 2020, 84, 12-26.
[17] Meza, A. Guidelines for Selecting High-temperature Lubricants. Machinery Lubrication 2016, November - December, 28-32. https://www.machinerylubrication.com/Read/30674/high-temperature-lubricants
[18] Ischuk, Yu.L. Sostav, struktura i svoistva plastichnykh smazok; Naukova dumka: Kyiv, 1996.
[19] Badertscher, M.; Bühlmann, Ph.; Pretsch, E. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer Berlin: Heidelberg, 2009.
[20] Klamann, D.; Rost, R.R. Lubricants and related products. Synthesis, properties, applications, international standards; Verlag Chemie: Weinheim, 1984.
[21] Lubricants and Lubrication; Mang, T.; Dresel, W., Eds.; Wiley-VCH, 2017.
[22] Canter, N. Biodegradable Lubricants: Working Definitions, Review of Key Applications and Prospects for Growth. Tribol. Lubr. Technol. 2020, December, 34-47.
[23] Papeikin, O.; Safronov, O.; Bodachivska, L.; Venger, I. Synthesis and Properties of Urea Greases Based on Aminoamides of Plant Oil Phosphatides. East.-Eur. J. Enterp. Technol. 2020, 4, 54-60. https://doi.org/10.15587/1729-4061.2020.210043
https://doi.org/10.15587/1729-4061.2020.210043