Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Validation of the Method for Quantifying Naringin in Grapefruit (Citrus paradisi) Extract Using High-Performance Liquid Chromatography

Tahir Suleymanov1, Kubra Aliyeva1, Emilya Balayeva1, Leyla Mansurova1, Kamala Jalilova1, Sabina Aliyeva1
Affiliation: 
1 Azerbaijan Medical University, Samad Vurgun Str., Baku, 9RWM+64M, Azerbaijan suleymanovtahir941@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.01.016
AttachmentSize
PDF icon full_text.pdf395.74 KB
Abstract: 
The study validates the HPLC method for quantifying naringin in a grapefruit extract. The demonstrated high accuracy, precision, and reproducibility were achieved with recovery ranging from 99.73% to 100.65%. The method linearity was confirmed by a correlation coefficient of 0.999. These findings have significant implications for grapefruit-based pharmaceutical development.
References: 

[1] Quintão, W.S.C.; Ferreira-Nunes, R.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Validation of a Simple Chromatographic Method for Naringenin Quantification in Skin Permeation Experiments. J. Chromatogr. B. 2022, 1201-1202, 123291. https://doi.org/10.1016/j.jchromb.2022.123291
https://doi.org/10.1016/j.jchromb.2022.123291

[2] Jha, D.K.; Shah, D.S.; Talele, S.R.; Amin, D. Correlation of Two Validated Methods for the Quantification of Naringenin in its Solid Dispersion: HPLC and UV Spectrophotometric Methods. SN Appl. Sci. 2020, 2, 698. https://doi.org/10.1007/s42452-020-2536-3
https://doi.org/10.1007/s42452-020-2536-3

[3] Ribeiro, I.A.; Ribeiro, M.H.L. Naringin and Naringenin Determination and Control in Grapefruit Juice by a Validated HPLC Method. Food Control 2008, 19, 432-438. https://doi.org/10.1016/j.foodcont.2007.05.007
https://doi.org/10.1016/j.foodcont.2007.05.007

[4] Caccamese, S.; Chillemi, R. Racemization at C-2 of Naringin in Pummelo (Citrus Grandis) with Increasing Maturity Determined by Chiral High-Performance Liquid Chromatography. J. Chromatogr. A 2010, 1217, 1089-1093. https://doi.org/10.1016/j.chroma.2009.10.073
https://doi.org/10.1016/j.chroma.2009.10.073

[5] Asghari, A.; Barfi, B.; Barfi, A.; Saeidi, I.; Ghollasi Moud, F.; Peyrovi, M.; Beig Babaei, A. Comparison between Conventional Solid Phase Extraction and Its Simplified Method for HPLC Determination of Five Flavonoids in Orange, Tangerine, and Lime Juice Samples. Acta Chromatogr. 2014, 26, 157-175. https://doi.org/10.1016/j.chroma.2013.08.078
https://doi.org/10.1016/j.chroma.2013.08.078

[6] Liu, E.-H.; Zhao, P.; Duan, L.; Zheng, G.-D.; Guo, L.; Yang, H.; Li, P. Simultaneous Determination of Six Bioactive Flavonoids in Citri Reticulatae Pericarpium by Rapid Resolution Liquid Chromatography Coupled with Triple Quadrupole Electrospray Tandem Mass Spectrometry. Food Chem. 2013, 141, 3977-3983. https://doi.org/10.1016/j.foodchem.2013.06.077
https://doi.org/10.1016/j.foodchem.2013.06.077

[7] Baranowska, I.; Hejniak, J.; Magiera, S. Development and Validation of a RP-UHPLC-ESI-MS/MS Method for the Chiral Separation and Determination of Flavanone, Naringenin and Hesperetin Enantiomers. Talanta 2016, 159, 181-188. https://doi.org/10.1016/j.talanta.2016.06.020
https://doi.org/10.1016/j.talanta.2016.06.020

[8] Csuti, A.; Sik, B.; Ajtony, Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - A Review. Crit Rev Anal Chem. 2022, 1-14. https://doi.org/10.1080/10408347.2022.2082241
https://doi.org/10.1080/10408347.2022.2082241

[9] Suleymanov, T.A.; Balayeva, E.Z.; Akhmedov, E.Yu. Development and Determination of Validation Parameters for the HPLC Method of Thymol Quantification in "Kalinol Plus" Syrup. News of Pharmacy 2016, 3. https://doi.org/10.24959/nphj.16.2117
https://doi.org/10.24959/nphj.16.2117

[10] Foods Program Methods Validation Processes and Guidelines. 2021. https://www.fda.gov/food/laboratory-methods-food/foods-program-methods-v...

[11] Foods Program Compendium of Analytical Laboratory Methods. 2023. https://www.fda.gov/food/laboratory-methods-food/foods-program-compendiu...

[12] Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products 3rd Edition U.S. Food and Drug Administration Foods Program. 2019. https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER20-7/Validation_Me...

[13] ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). ICH: Geneva, 1995.

[14] Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. https://doi.org/10.3390/foods9091206
https://doi.org/10.3390/foods9091206

[15] Martín, J.F.; Liras, P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics 2022, 11, 82. https://doi.org/10.3390/ANTIBIOTICS11010082
https://doi.org/10.3390/antibiotics11010082

[16] Guttman, Y.; Yedidia, I.; Nudel, A.; Zhmykhova, Y.; Kerem, Z.; Carmi, N. New Grapefruit Cultivars Exhibit Low Cytochrome P4503A4-Inhibition Activity. Food Chem. Toxicol. 2020, 137, 111135. https://doi.org/10.1016/J.FCT.2020.111135
https://doi.org/10.1016/j.fct.2020.111135

[17] Ferreira-Nunes, R.; Angelo, T.; da Silva, S.M.M.; Magalhães, O.; Gratieri, T.; da Cunha-Filho, M.S.S.; Gelfuso, G.M. Versatile Chromatographic Method for Catechin Determination in Development of Topical Formulations Containing Natural Extracts. Biomed. Chromatogr. 2018, 32, e4062. https://doi.org/10.1002/bmc.4062
https://doi.org/10.1002/bmc.4062

[18] Agrawal, K.; Agrawal, C.; Blunden, G. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Nat. Prod. Commun. 2021, 16. https://doi.org/10.1177/1934578X211042540
https://doi.org/10.1177/1934578X211042540

[19] Qurtam, A.A.; Mechchate, H.; Es-safi, I.; Al-zharani; M., Nasr, F.A.; Noman, O.M.; Aleissa, M.; Imtara, H.; Aleissa, A.M.; Bouhrim, M. Citrus Flavanone Narirutin, in vitro and in silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021, 13, 1818. https://doi.org/10.3390/pharmaceutics13111818
https://doi.org/10.3390/pharmaceutics13111818

[20] Priyadarsani, S.; Patel, A.S.; Kar, A.; Dash, S. Process Optimization for the Supercritical Carbondioxide Extraction of Lycopene from Ripe Grapefruit (Citrus paradisi) Endocarp. Sci. Rep. 2021, 11, 10273. https://doi.org/10.1038/s41598-021-89772-6
https://doi.org/10.1038/s41598-021-89772-6