Ultrasonic Cavitation in Wastewater Treatment from Azo Dye Methyl Orange

Yurii Sukhatskiy1, Zenovii Znak1, Olha Zin1, Dmytro Chupinskyi1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., Lviv 79013, Ukraine sukhatsky@i.ua
DOI: 
https://doi.org/10.23939/chcht15.02.284
AttachmentSize
PDF icon full_text.pdf314.5 KB
Abstract: 
The work is devoted to the study of reagent treatment of methyl orange mono azo dye under the action of acoustic vibrations of the ultrasonic range. The positive effect of cavitation phenomena on the rate of mineralization of azo dye (13.4% increase) was compared with the reagent treatment of the solution without ultrasonic vibrations. On the basis of the analyzed information sources and experimental results, a schematic technological scheme of cavitation-reagent mineralization of methyl orange was developed, the main apparatus of which is a hydrodynamic jet cavitator (scaling for industry).
References: 

[1] Innocenzi V., Prisciandaro M., Centofanti M., Vegliò F.: J. Environ. Chem. Eng., 2019, 7, 103171. https://doi.org/10.1016/j.jece.2019.103171
https://doi.org/10.1016/j.jece.2019.103171

[2] Li P., Song Y., Wang S. et al.: Ultrason. Sonochem., 2015, 22, 132. https://doi.org/10.1016/j.ultsonch.2014.05.025
https://doi.org/10.1016/j.ultsonch.2014.05.025

[3] Robinson T., McMullan G., Marchant R., Nigam P.: Bioresour. Technol., 2001, 77, 247. https://doi.org/10.1016/S0960-8524(00)00080-8
https://doi.org/10.1016/S0960-8524(00)00080-8

[4] Yang S., Jin R., He Z., et al.: Chem. Eng. Trans., 2017, 59, 289. https://doi.org/10.3303/CET1759049

[5] Yang S., Jin R., He Z., et al.: Chem. Eng. Trans., 2017, 59, 1063. https://doi.org/10.3303/CET1759178

[6] Koval I., Kislenko V., Starchevskii V., Shevchuk L.: J. Water Chem. Technol., 2012, 34, 112. https://doi.org/10.1016/j.cej.2010.07.063
https://doi.org/10.1016/j.cej.2010.07.063

[7] Koval I., Starchevskyy V.: Chem. Chem. Technol., 2020, 14, 264. https://doi.org/10.23939/chcht14.02.264
https://doi.org/10.23939/chcht14.02.264

[8] Batoyeva A., Sizykh M., Aseyev D., Khandarkhayeva M.: Voda: Khimiya i Ekologiya, 2011, 9, 27.

[9] Batoyeva A., Sizykh M., Aseyev D.: Vestnik IrGTU, 2010, 3, 77.

[10] Cai M., Su J., Zhu Y., et al.: Ultrason. Sonochem., 2016, 28, 302. https://doi.org/10.1016/j.ultsonch.2015.08.001
https://doi.org/10.1016/j.ultsonch.2015.08.001

[11] Suresh Kumar M., Sonawane S., Bhanvase B., Bethi B.: J. Water Process. Eng., 2018, 23, 250. https://doi.org/10.1016/j.jwpe.2018.04.004
https://doi.org/10.1016/j.jwpe.2018.04.004

[12] Ma C., Zhang L., Wang J., Li S., Li Y.: Res. Chem. Intermed., 2015, 41, 6009. https://doi.org/10.1007/s11164-014-1717-3
https://doi.org/10.1007/s11164-014-1717-3

[13] Fan J., Guo Y., Wang J., Fan M.: J. Hazard. Mater., 2009, 166, 904. https://doi.org/10.1016/j.jhazmat.2008.11.091
https://doi.org/10.1016/j.jhazmat.2008.11.091

[14] Rahim Pouran S., Bayrami A., Abdul Aziz A. et al.: J. Mol. Liq., 2016, 222, 1076. https://doi.org/10.1016/j.molliq.2016.07.120
https://doi.org/10.1016/j.molliq.2016.07.120

[15] Cui P., Chen Y., Chen G.: Ind. Eng. Chem. Res., 2011, 50, 3947. https://doi.org/10.1021/ie100832q
https://doi.org/10.1021/ie100832q

[16] Dai K., Chen H., Peng T., Ke D., Yi H.: Chemosphere, 2007, 69, 1361. https://doi.org/10.1016/j.chemosphere.2007.05.021
https://doi.org/10.1016/j.chemosphere.2007.05.021

[17] Soboleva N., Nosonovich A., Goncharuk V.: Khimiya i Tekhnologiya Vody, 2007, 29, 125.

[18] Chun H., Yizhong W., Tang H.: Appl. Catal. B, 2001, 35, 95. https://doi.org/10.1016/S0926-3373(01)00236-3
https://doi.org/10.1016/S0926-3373(01)00236-3

[19] Yavorskiy V., Sukhatskiy Y., Znak Z., Mnykh R.: Chem. Chem. Technol., 2016, 10, 507. https://doi.org/10.23939/chcht10.04.507
https://doi.org/10.23939/chcht10.04.507