Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents

Iryna Sobechko1, Volodymyr Dibrivnyi1, Yuri Horak2, Nadiia Velychkivska3, Victoriia Kochubei1, Mykola Obushak2
Affiliation: 
1 Lviv Polytechnic National University, S.Bandery St., 12, 79013 Lviv, Ukraine; 2 Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine 3 Institute of Macromolecular Chemistry AS CR, v.v.i., 2 Heyrovskeho Sq., 16206 Prague, Czech Republic
DOI: 
https://doi.org/10.23939/chcht11.04.397
AttachmentSize
PDF icon full_text.pdf147.84 KB
Abstract: 
The temperature dependencies of both acids solubility in acetonitrile, dimethylketone, isopropanol, ethylacetate and benzene were investigated. The results were represented by Shredder’s equation according to which enthalpies, entropies and Gibbs energy of solubility at 298 K were determined. Fusion heats of the acids were determined using differential thermal analysis. In accordance with obtained values the enthalpies, entropies and Gibbs energy of mixing were calculated. The compensating effect of mixing was observed for al solvents with carboxy group.
References: 

[1] Fürstner A., Castanet A., Radkowski K., Lehmann C.: J. Org. Chem., 2003, 68, 1521. https://doi.org/10.1021/jo026686q
https://doi.org/10.1021/jo026686q

[2] Holla B., Akberali P., Shivananda M.: Farmaco, 2000, 55, 256. https://doi.org/10.1016/S0014-827X(00)00030-6
https://doi.org/10.1016/S0014-827X(00)00030-6

[3] Williams D., Lee M.-R., Song Y.-A. et al.: J. Am. Chem. Soc., 2007, 129, 9258. https://doi.org/10.1021/ja072817z
https://doi.org/10.1021/ja072817z

[4] Obushak N., Gorak Yu., Matiichuk V., Lytvyn R.: Russ. J. Org. Chem., 2008, 44, 1689. https://doi.org/10.1134/S1070428008110213
https://doi.org/10.1134/S1070428008110213

[5] Obushak N., Gorak Yu., Matiichuk V., Lytvyn R.: Russ. J. Org. Chem., 2009, 45, 541. https://doi.org/10.1134/S1070428009090103
https://doi.org/10.1134/S1070428009090103

[6] Obushak N., Lesyuk A., Gorak Yu., Matiichuk V.: Russ. J. Org. Chem., 2009, 45, 1375. https://doi.org/10.1134/S1070428009090103
https://doi.org/10.1134/S1070428009090103

[7] Obushak N., Lesyuk A., Ganushchak N. et al.: J. Org. Chem. USSR (Engl. Transl.), 1986, 22, 2093.

[8] Obushak N., Ganushchak N., Lesyuk A. et al.: J. Org. Chem. USSR (Engl. Transl.), 1990, 26, 748.

[9] Zhu J., Bienayme H. (Eds.): Multicomponent Reactions. Wiley-VCH, Weinheim 2005.
https://doi.org/10.1002/3527605118

[10] Sobechko I., Van-Chin-Syan Yu., Gorak Yu. et al.: Rus. J. Phys. Chem., 2015, 89, 919. https://doi.org/10.1134/S003602441506028X
https://doi.org/10.1134/S003602441506028X

[11] Sobechko I., Gorak Yu., Van-Chin-Syan Yu. et al.: Izv. Vys. Ucheb. Zaved., 2015, 58, 45.

[12] Sobechko I., Prokop R., Gorak Yu. et al.: Voprosy Khimii i Khim. Techn., 2013, 4, 12.

[13] Sobechko I.: Voprosy Khimii i Khim. Techn., 2014, 5-6, 48.

[14] Serheyev V.: Chem. Chem. Technol., 2012, 6, 15.

[15] Serheyev V.: Chem. Chem. Technol., 2015, 9, 1.
https://doi.org/10.23939/chcht09.01.001

[16] Serheyev V.: Rus. J. Phys. Chem., 2016, 90, 575. https://doi.org/10.1134/S0036024416030274
https://doi.org/10.1134/S0036024416030274

[17] Han S., Meng L., Du C. et al.: J. Chem. Thermodyn., 2017, 97, 17. https://doi.org/10.1016/j.jct.2015.11.025
https://doi.org/10.1016/j.jct.2015.11.025

[18] Li X., Du C., Cong Y., Zhao H.: J. Chem. Thermodyn., 2017, 104, 189. https://doi.org/10.1016/j.jct.2016.09.033
https://doi.org/10.1016/j.jct.2016.09.033

[19] Chickos J., Acree W. Jr.: J. Phys. Chem. Ref. Data, 2003, 32, 519. https://doi.org/10.1063/1.1529214
https://doi.org/10.1063/1.1529214

[20] http://webbook.nist.gov (March 18th, 2015)

[21] Vasil'ev I., Petrov V.: Thermodynamicheskie Svoistva Kislorod-soderzhashih Organicheskih Veshestv. Khimiya, Leningrad 1984.