A Synthetic Approach of D-Glucose Derivatives: Spectral Characterization and Antimicrobial Studies

Sarkar Kawsar1, Jannatul Ferdous1, Golam Mostafa2 and Mohammad Manchur3
1 Laboratory of Carbohydrate and Protein Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong-4331, Bangladesh; akawsarabe@yahoo.com 2 Department of Chemistry, Faculty of Science, Comilla Govt. Womens University College, Comilla-3000, Bangladesh 3 Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong-4331, Bangladesh
PDF icon full_text.pdf178.29 KB
A new series of methyl 4,6-O-(4-methoxybenzylidene)--D-glucopyranoside derivatives was synthesized using the direct acylation method. Methyl--D-glucopyranoside was selectively converted to methyl 4,6-O-(4-methoxybenzylidene)--D-glucopyranoside by the reaction with 4-methoxybenzaldehyde dimethylacetal in a reasonable yield. Using a wide variety of acylating agents, a series of 2,3-di-O-acyl derivatives of this product was also prepared in order to gather additional information for structure elucidation. The structures of the newly synthesized compounds were elucidated by their spectral and elemental analysis. All synthesized compounds were screened for in vitro antimicrobial activities against ten human pathogenic bacteria and four plant pathogenic fungi. Encouragingly, a number of test compounds showed better antimicrobial activity than the standard antibiotics employed. It observed that the test compounds were more effective against fungal phytopathogens than those of the bacterial organisms.

[1] Singh H., Shukla K., Dwivedi R. et al.: J. Agric. Food Chem., 1990, 38, 1483.

[2] Rjabova J., Rjabovs V., Moreno A. et al.: Cent. Eur. J. Chem., 2012, 10, 386.

[3] Tagashira M., Tanaka A., Hisatani K. et al.: Glycoconjugate J., 2001, 18, 449.

[4] Andry C., Wylde R., Laffite C. et al.: Phytochemistry, 1982, 21, 1123.

[5] Ishii H., Nakamura M., Seo S. et al.: Chem. Pharm. Bull., 1980, 28, 2367.

[6] Hui X., Chu C. and Zhang Z.: Indian J. Chem., 2002, 41, 2176.

[7] Kandeel M., Mohamed L., Hamid M. et al.: Sci. Pharm. 2012, 80, 531.

[8] Behalo M., Aly A., Wasfy A. et al.: Eur. J. Chem., 2013, 4, 92.

[9] van Dijkum E., Danac R., Hughes D. et al.: Org. Biomol. Chem., 2009, 7, 1097.

[10] Ghorab M., Ismail Z., Gaward S. et al.: Heteroatom Chem., 2004, 15, 57.

[11] Gupta R., Paul S., Gupta A. et al.: Indian J. Chem., 1997, 36(B), 707.

[12] Kabir A., Kawsar S., Bhuiyan M. et al.: Bull. Pure Appl. Sci., 2004, 23, 83.

[13] Kabir A., Dutta P. and Anwar M.: Int. J. Agric. Biol., 2005, 7, 760.

[14] Kabir A., Kawsar S., Bhuiyan M. et al.: J. Bangladesh Chem. Soc., 2008, 21, 72.

[15] Kawsar S., Kabir A., Bhuiyan M. et al.: J. Bangladesh Chem. Soc., 2012, 25, 101.

[16] Kabir A., Dutta P. and Anwar M.: Int. J. Agric. Biol., 2005, 7, 754.

[17] Kabir A., Kawsar S., Bhuiyan M. et al.: Pakistan J. Sci. Ind. Res., 2009, 52, 138.

[18] Moyer B., Pfeffer P., Moniot J. et al.: Phytochem., 1977, 16, 375.

[19] Wagner D., Verheyden J. and Moffatt J.: J. Org. Chem., 1974, 39, 24.

[20] Williams J. and Richardson A.: Tetrahedron, 1967, 23, 1369.

[21] Tsuda Y. and Haque E.: Chem. Pharm. Bull., 1983, 31, 1437.

[22] Hirschhauser C., Velcicky J., Schlawe D. et al.: Chemistry-A Eur. J., 2013, 19, 13017.

[23] Kabir A., Dutta P. and Anwar M.: Chittagong Univ. J. Sci., 2005, 29, 01.

[24] Kawsar S., Kabir A., Manik M. et al.: Chem. Sci. J., 2012, 2012 (CSJ-73), 01.

[25] Bauer A., Kirby W., Sherris J. et al.: American J. Clin. Pathol., 1966, 45, 493.

[26] Miah M., Ahmed H., Sharma N. et al.: Bangladesh J. Bot., 1990, 19, 05.

[27] Grover R. and Moore J. et al.: Phytopathology, 1962, 52, 876.

[28] Kabir A., Kawsar S., Bhuiyan M. et al.: Chittagong Univ. J. Biol. Sci., 2008, 3, 53.

[29] Kabir A., Dutta P., Kawsar S. et al.: Bull. Pure Appl. Sci., 2004, 23, 39.