Synthesis, Characterization, Antimicrobial and Molecular Docking Study of Benzooxadiazole Derivatives
Attachment | Size |
---|---|
full_text.pdf | 828.8 KB |
[1] Podolsky, S.H. The Evolving Response to Antibiotic Resistance (1945-2018). Palgrave Commun. 2018, 4, 124. https://doi.org/10.1057/s41599-018-0181-x
https://doi.org/10.1057/s41599-018-0181-x
[2] Nagaraja, A.; Puttaiahgowda, Y.M.; Kulal, A.; Parambil, A.M.; Varadavenkatesan, T. Synthesis, Characterization, and Fabrication of Hydrophilic Antimicrobial Polymer Thin Film Coatings. Macromol. Res., 2019, 27, 301-309. https://doi.org/10.1007/s13233-019-7040-5
https://doi.org/10.1007/s13233-019-7040-5
[3] Yıldırım, I.; Aktaş, A.; Celepci D.B.; Kırbağ, S.; Kutlu, T.; Gök, Y.; Aygün, M. Synthesis, Characterization, Crystal Structure, and Antimicrobial Studies of 2-Morpholinoethyl-Substituted Benzimidazolium Salts and Their Silver(I)-N-Heterocyclic Carbene Complexes. Res. Chem. Intermediat. 2017, 43, 6379-6393. https://doi.org/10.1007/s11164-017-2995-3
https://doi.org/10.1007/s11164-017-2995-3
[4] Murugavel, S.; Sundramoorthy, S.; Subashini, R.; Pavan, P. Synthesis, Characterization, Pharmacological, Molecular Modeling and Antimicrobial Activity Evaluation of Novel Isomer Quinoline Derivatives. Struct. Chem. 2018, 29, 1677-1695. https://doi.org/10.1007/s11224-018-1149-6
https://doi.org/10.1007/s11224-018-1149-6
[5] Kavitha, S.; Kannan, K.; Ghanavel, S. Synthesis, Characterization and Biological Evaluation of Novel 2,5substituted-1,3,4 Oxadiazole Derivatives. Saudi Pharm. J. 2017, 25, 337-345. https://doi.org/10.1016/j.jsps.2016.07.004
https://doi.org/10.1016/j.jsps.2016.07.004
[6] Modi, V.; Modi, P. Oxadiazole: Synthesis, Characterization and Biological Activities. J. Saudi Chem. Soc. 2012, 16, 327-332. https://doi.org/10.1016/j.jscs.2011.12.017
https://doi.org/10.1016/j.jscs.2011.12.017
[7] Ajay Kumar, K.; Lokeshwari, D.; Pavithra, G.; Vasanth Kumar, G. 1,2,4-Oxadiazoles: A Potential Pharmacological Agents-An Overview. Res. J. Pharm. Technol. 2012, 5, 1490-1496.
[8] Parin, V.K.; Rakesh, S.R.; adhuri H., J.M.; Sonali, P.; Pollavi, P.M. Greener Synthesis of Some Bioactive Res. J. Pharm. Technol., 2016, 9, 1433-1440. https://doi.org/10.5958/0974-360X.2016.00277.8
https://doi.org/10.5958/0974-360X.2016.00277.8
[9] Muhammed, K.M.; Ayad, S.H., Nihad, I.T. Preparation and Identification of Some New Compounds 1,3,4-Oxidiazole Derivatives Using Grinding Technique. Res. J. Pharm. Technol. 2018, 11, 4272-4276. https://doi.org/10.5958/0974-360X.2018.00783.7
https://doi.org/10.5958/0974-360X.2018.00783.7
[10] Golmohhamadi, F.; Balalaie, S.; Hamdan, F.; Maghari, S. Efficient Synthesis of Novel Conjugated 1,3,4-Oxadiazole-Peptides. New J. Chem. 2018, 42, 4344-4351. https://doi.org/10.1039/C7NJ04720G
https://doi.org/10.1039/C7NJ04720G
[11] Baijika P., Akash M., Midhula C., Shadiha S. Synthesis and Biological Activities of 1, 3, 4-Oxadiazole Derivatives: A Review of Literature. Int. J. Adv. Res. 2018, 6, 1114-1122. https://doi.org/10.21474/IJAR01/6328
https://doi.org/10.21474/IJAR01/6328
[12] Suman, B.; Sunil, K.; Anu, K.; Saini, V.; Prasad, D.N. 1,3,4-Oxadiazole Derivatives: Synthesis, Characterization, Antimicrobial Potential, and Computational Studies. BioMed. Res. Int. 2014, 2014. Article ID 172791. https://doi.org/10.1155/2014/172791
https://doi.org/10.1155/2014/172791
[13] Salahuddin; Mazumder, A.; Shahar Yar, M.; Mazumder, R.; Chakraborthy, G.S.; Ahsan, M.J.; Rahman, M.U. Updates on Synthesis and Biological Activities of 1,3,4-Oxadiazole: A Review. Synth.Commun. 2017, 47, 1805-1847. https://doi.org/10.1080/00397911.2017.1360911
https://doi.org/10.1080/00397911.2017.1360911
[14] Shukla, C.; Srivastava, S. Biologically Active Oxadiazole. J. Drug Deliv. Therap. 2015, 5, 8-13. https://doi.org/10.22270/jddt.v5i6.1100
https://doi.org/10.22270/jddt.v5i6.1100
[15] Bondock, S.; Adel, S.; Etman, H.; Badria, F. Synthesis and Antitumor evaluation of Some New 1,3,4-Oxadiazole-Based Heterocycles. Eur. J. Med. Chem. 2012, 48, 192-199. https://doi.org/10.1016/j.ejmech.2011.12.013
https://doi.org/10.1016/j.ejmech.2011.12.013
[16] Patel, K.; Prajapati, S.; Panchal, S.N.; Patel, H.D. Review of Synthesis of 1,3,4-Oxadiazole Derivatives. Synth. Commun. 2014, 44, 1859-1875. https://doi.org/10.1080/00397911.2013.879901
https://doi.org/10.1080/00397911.2013.879901
[17] Ng, Y.P.; Chen, Y.; Hu, Y.; Ip, F.C.F.; Ip, N.Y. Olean-12-Eno[2,3-c] [1,2,5]Oxadiazol-28-Oic Acid (OEOA) Induces G1 Cell Cycle Arrest and Differentiation in Human Leukemia Cell Lines. PLoS ONE, 2013, 8, e63580. https://doi.org/10.1371/journal.pone.0063580
https://doi.org/10.1371/journal.pone.0063580
[18] Desai, N.C.; Bhatt, N.; Somani, H.; Trivedi, A. Synthesis, Antimicrobial and Cytotoxic Activities of Some Novel Thiazole Clubbed 1,3,4-Oxadiazoles. Eur. J. Med. Chem. 2013, 67, 54-59. https://doi.org/10.1016/j.ejmech.2013.06.029
https://doi.org/10.1016/j.ejmech.2013.06.029
[19] Khalillulah, H.; Khan, S.; Nomani, M.S.; Ahmed, B. Synthesis, Characterization and Antimicrobial Activity of Benzodioxane Ring Containing 1,3,4-Oxadiazole Derivatives. Arab. J. Chem. 2016, 9, S1029-S1035. https://doi.org/10.1016/j.arabjc.2011.11.009
https://doi.org/10.1016/j.arabjc.2011.11.009
[20] Khan, S.; Imam; M.; Ahmad, A.; Basha, S.H.; Husain, A. Synthesis, Molecular Docking with COX 1& II Enzyme, ADMET Screening and In Vivo Anti-Inflammatory Activity of Oxadiazole, Thiadiazole and Triazole Analogs of Felbinac. J. Saudi Chem. Soc. 2018, 22, 469-484. https://doi.org/10.1016/j.jscs.2017.05.006
https://doi.org/10.1016/j.jscs.2017.05.006
[21] Iyer, V.B.; Gurupadayya, B.; Koganti, V.S.; Inturi, B.; Chandan, R.S. Design, Synthesis and Biological Evaluation of 1,3,4-Oxadiazoles as Promising Anti-Inflammatory Agents. Med. Chem. Res. 2017, 26, 190-204. https://doi.org/10.1007/s00044-016-1740-6
https://doi.org/10.1007/s00044-016-1740-6
[22] Chen, Y.; Xu, X.; Liu, X.; Yu, M.; Liu, B-F.; Zhang, G. Synthesis and Evaluation of a Series of 2-Substituted-5-Thiopropylpiperazine (Piperidine)-1,3,4-Oxadiazoles Derivatives as Atypical Antipsychotics. PLoS ONE 2012, 7, e35186. https://doi.org/10.1371/journal.pone.0035186
https://doi.org/10.1371/journal.pone.0035186
[23] Harish, K.P.; Mohana, K.N.; Mallesh, L.; Prasanna Kumar, B.N. Synthesis of Novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-Piperazine Derivatives and Evaluation of Their In Vivo Anticonvulsant Activity. Eur. J. Med. Chem. 2013, 65, 276-283. https://doi.org/10.1016/j.ejmech.2013.04.054
https://doi.org/10.1016/j.ejmech.2013.04.054
[24] Shakir, R.M.; Ariffin, A.; Abdulla, M.A. Synthesis of New 2,5-Di-substituted 1,3,4-Oxadiazoles Bearing 2,6-Di-tert-butylphenol Moieties and Evaluation of Their Antioxidant Activity. Molecules 2014, 19, 3436-3449. https://doi.org/10.3390/molecules19033436
https://doi.org/10.3390/molecules19033436
[25] Hajimahdi, Z.; Zarghi, A.; Zabihollahi, R.; Aghasadegh M.R. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New 1,3,4-Oxadiazole- and 1,3,4-Thiadiazole-Substituted 4-Oxo-4H-Pyrido[1,2-A]Pyrimidines as Anti-HIV-1 Agents. Med. Chem. Res. 2013, 22, 2467-2475. https://doi.org/10.1007/s00044-012-0241-5
https://doi.org/10.1007/s00044-012-0241-5
[26] Pitasse-Santos, P.; Sueth-Santiago; V.; Lima; M.E.F. 1,2,4- and 1,3,4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. J. Braz. Chem. Soc. 2018, 29, 435-456. https://doi.org/10.21577/0103-5053.20170208
https://doi.org/10.21577/0103-5053.20170208
[27] Dighe, N.S.; Shinde, P.; Anap, H.; Bhawar, S.; Musmade, D.S. QSAR Study and Synthesis of Some New 2, 5-Disubstituted 1, 3, 4-Oxadiazole Derivatives as Anti-Microbial and Anti-Inflammatory Agents. Asian J. Pharm. Res. [Online] 2014, 4 (4), 174-179. https://asianjpr.com/AbstractView.aspx?PID=2014-4-4-2 (accessed October 12, 2019)
[28] Paun, A.; Hadade, N.D.; Paraschivescu, C.C.; Matache, M. 1,3,4-Oxadiazoles as Luminescent Materials for Organic Light Emitting Diodes via Cross-Coupling Reactions. J. Mater. Chem. C 2016, 37, 8596-8610. https://doi.org/10.1039/C6TC03003C
https://doi.org/10.1039/C6TC03003C
[29] Chidirala, S.; Hidayath, U.; Valaboyu, A; Kiran, M.R.; Mohanty, M.E.; Satyanarayan, M.N.; Umesh, G.; Bhanuprakash, K.; Rao, V.J. Pyrene-Oxadiazoles for Organic Light-Emitting Diodes: Triplet to Singlet Energy Transfer and Role of Hole-Injection/Hole-Blocking Materials. J. Org. Chem. 2016, 81, 603. https://doi.org/10.1021/acs.joc.5b02423
https://doi.org/10.1021/acs.joc.5b02423
[30] Wei, H.; He, C.; Zhang, J.; Shreeve, J.M. Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials. Angew. Chem. Int. Ed. 2015, 54, 9367-9371. https://doi.org/10.1002/anie.201503532
https://doi.org/10.1002/anie.201503532
[31] Han, J.; Wang, Q.; Chang, X-Y.; Zhu, L-R.: Fluorescent Liquid Crystalline Compounds with 1,3,4-Oxadiazole and Benzo[b]thiophene Units. Liq. Cryst. 2012, 39, 669-674. https://doi.org/10.1080/02678292.2012.671966
https://doi.org/10.1080/02678292.2012.671966
[32] Cao, Z.; Tang, Y.; Cang, H.; Xu, J.; Lu, G.; Jing, W. Novel Benzimidazole Derivatives as Corrosion Inhibitors of Mild Steel in the Acidic Media. Part II: Theoretical Studies. Corros. Sci. 2014, 83, 292-298. https://doi.org/10.1016/j.corsci.2014.02.025
https://doi.org/10.1016/j.corsci.2014.02.025
[33] Bearne, S.; Blouin, C. Inhibition of Escherichia coliGlucosamine-6-phosphate Synthase by Reactive Intermediate Analogues. The Role of the 2-Amino Function in Catalysis. J. Biol. Chem. 2000, 275, 135-140. https://doi.org/10.1074/jbc.275.1.135
https://doi.org/10.1074/jbc.275.1.135
[34] Morris, G.; Goodsell, D.; Halliday, R.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
[35] Al-Hassani, R.A.M. Synthesis, Characterization, Antimicrobial and Theoretical Studies of V(IV),Fe(III),Co(II),Ni(II), Cu(II), and Zn(II)Complexes with Bidentate (NN) Donar Azo Dye Ligand. Baghdad Sci. J. 2016, 13, 0793. https://doi.org/10.21123/bsj.13.4.793-805
https://doi.org/10.21123/bsj.13.4.793-805
[36] Nief, O.A.; Salman, H.; Ahamed, L.S. Synthesis, Characterization, Biological Activity Studies of Schiff Bases and 1,3-Oxazipene Derived from 1,1 -Bis (4-aminophenyl) -4-Phenyl Cyclohexane. Iraqi J. Sci. 2017, 58, 1998-2011. https://doi.org/10.24996/ijs.2017.58.4B.2
https://doi.org/10.24996/ijs.2017.58.4B.2
[37] Greenwood, D.; Slack, R.; Peurtherer, J.; Barer, M. Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control, 17th edn; Churchill Livingstne: Edinburgh, 2007.
[38] Balouiri, M.; Sadiki, M.; Ibnsouda, S. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
https://doi.org/10.1016/j.jpha.2015.11.005
[39] Abid, S.; Abdula, A.; Al Marjani, M.; Abdulhameed, Q. Synthesis, Antimicrobial, Antioxidant and Docking Study of Some Novel 3,5-Disubstituted-4,5-dihydro-1H-pyrazoles Incorporating Imine Moiety. Egypt. J. Chem. 2019, 62, 739-749. https://doi.org/10.21608/EJCHEM.2018.5804.1498
https://doi.org/10.21608/ejchem.2018.5804.1498
[40] Teplyakov, A.; Obmolova, G.; Badet-Denisot, M.A.; Badet, B.; Polikarpov, I. Involvement of the C Terminus in Intramolecular Nitrogen Channeling in Glucosamine 6-Phosphate Synthase: Evidence from A 1.6 Å Crystal Structure of the Isomerase Domain. Structure 1998, 6, 1047-1055. https://doi.org/10.1016/S0969-2126(98)00105-1
https://doi.org/10.1016/S0969-2126(98)00105-1