Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis and Investigation of Properties of Epoxy-Novolac Copolymers Based on Polycyclic Bisphenols of Norbornane Type

Givi Papava1, Ia Chitrekashvili1, Tamara Tatrishvili2, Marina Gurgenishvili1, Ketevan Archvadze1, Nora Dokhturishvili1, Eter Gavashelidze1, Nazi Gelashvili1, Riva Liparteliani1
Affiliation: 
1 Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University, Tbilisi 0186, Georgia 2 Ivane Javakhishvili Tbilisi State University, Department of Macromolecular Chemistry, Tbilisi 0179, Georgia ia.chitrekashvili@tsu.ge
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
The purpose of this study was the synthesis of copolymers based on the novolac oligomer and diglycidal ether of polycyclic bisphenols of the norbornane type and the study of the curing process of the obtained copolymers. Copolymers were synthesized based on polycyclic bisphenols: 4,4'-(2-norbornilidene) diphenyl; 4,4'-(hexahydro-4,7-methylenindane)-di-o-cresol; 4,4′-(hexahydro-4,7-methylenindane-5-ylidene) diphenol; 4,4′-(decahydro-1,4,5,8 - dimethylennaft-2-ylidene)diphenol; and 2,2-bis-(4-oxyphenyl)propane. The synthesis was carried out in two stages. In the first stage, the main chemical process during copolymerization is the interaction of epoxy groups with phenolic hydroxyls of the novolac oligomer, which leads to the formation of a block copolymer. In the second stage of the process polymers with a three-dimensional structure are formed as a result of the curing process. The optimal curing mode was set. Fiberglass plastics were prepared from the obtained copolymers, which were characterized by good physico-mechanical and thermal properties.
References: 

[1] Gunka, V.; Demchuk, Y.; Drapak, I.; Korchak, B.; Bratychak, M. Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde. Chem. Chem. Technol. 2023, 17, 339–346. https://doi.org/10.23939/chcht17.02.339
[2] Nair, C. P. R. Advances in Addition-Cure Phenolic Resins. Prog. Polym. Sci. 2004, 29, 401–498. https://doi.org/10.1016/j.progpolymsci.2004.01.004
[3] Gardziella, A.; Pilato, L. A.; Knop, A. Phenolic resins: Chemistry applications, standardization, safety and ecology; Springer: New York, 2000.
[4]. Bajpai, M.; Shukla, V.; Habib, F. Development of a Heat Resistant UV-Curable Epoxy Coating. Prog. Org. Coat. 2005, 53, 239–245. https://doi.org/10.1016/j.porgcoat.2004.12.010
[5] He, H.; Li, K.; Wang, J.; Wang, J.; Gu, J.; Li, R. Effects of Novolac Resin Modification on Mechanical Properties of Carbon Fiber/Epoxy Composites. Polym. Compos. 2011, 32, 227–235. https://doi.org/10.1002/pc.21037
[6] Gibson, G. In Brydson's Plastics Materials (8th Edition), Chapter 27 - Epoxy Resins; Gilbert Marianne, Ed.; ScienceDirect 2017; pp. 773–797. https://doi.org/10.1016/B978-0-323-35824-8.00027-X
[7] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J. Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
[8] Ooi, S. K.; Cook, W. D.; Simon, G. P.; Such, C. H. DSC Studies of the Curing Mechanisms and Kinetics of DGEBA Using Imidazole Curing Agents. Polymer 2000, 41, 3639–3649. https://doi.org/10.1016/S0032-3861(99)00600-X
[9] Liu, W. B.; Qiu, Q. H.; Wang, J.; Huo, Z. C.; Sun, H. Curing Kinetics and Properties of Epoxy Resin–Fluorenyl Diamine Systems. Polymer 2008, 49, 4399–4405. https://doi.org/10.1016/j.polymer.2008.08.004
[10] Pan, G. Y.; Du, Z. J.; Zhang, C.; Li, C. J.; Yang, X. P.; Li, H.Q. Synthesis, Characterization, and Properties of Novel Novolac Epoxy Resin Containing Naphthalene Moiety. Polymer 2007, 48, 3686–3693. https://doi.org/10.1016/j.polymer.2007.04.032
[11] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499–506. https://doi.org/10.23939/chcht16.04.499
[12] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl) silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035
[13] Mukbaniani, O.; Tatrishvili, Y.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807
[14] Papava, G.Sh.; Chitrekashvili, I.A.; Dokhturishvili, N.S.; Archvadze, K. T.; Liparteliani, R.G.; Gurgenishvili, M.B. Regularities of the Reaction of Epichlorohydrin with Polycyclic Bisphenols. Oxid. Commun. 2022, 45, 760–769.
[15] Papava, G.Sh.; Chitrekashvili, I.A.; Gelashvili, N.S.; Gavashelidze, E.A.; Khotenashvili, N.S.; Papava, K.R. Study of the Formation of Epoxy Polymers Based on Diglycidal Ethers of Polycyclic Bisphenols of the Norbornane Type. Oxid. Commun. 2022, 45, 770–779.
[16] Gavashelidze, E.; Maisuradze, N.; Dokhturishvili, N.; Papava, G.; Gelashvili, N.; Molodinashvili, Z.; Gurgenishvili, M.; Chitrekashvili, I. Polyuretanes on the Basis of Card-Type Polycyclic Bisphenols Different Diisocyanates; Bull. Nat. Acad. Sci. Geo. 2012, 6, 113–116.
[17] Papava, G. Sh.; Chitrekashvili, I. A.; Gurgenishvili, M. B.; Gavashelidze, E. A.; Gelashvili, N. S.; Khotenashvili, N. S. Thermo- and Heat-Resistant Polymers Based on Diglycidyl Ethers of Bisphenols with Cyclic Substituents. Oxid. Commun. 2023, 46, 644–654.
[18] Papava, G.Sh.; Dokhturishvili, N.S.; Chitrekashvili, I.A.; Archvadze, K.T.; Liparteliani, R.G.; Tabukashvili, Z.Sh. Dependence of the Thermal Properties of Epoxy Polymers on the Hardener Structure. Oxid. Commun. 2023, 46, 655–665.
[19] Papava, G.; Gelashvili, N.; Molodinashvili, Z.; Gurgenishvili, M.; Chitrekashvili, I. Synthesis and Study of Phenol-Formaldehyde Type Polymers on the Basis of Bisphenol with Adamantane Grouping. J. Balkan Trib. Assoc. 2011, 17, 426–435.
[20] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Markarashvili, E.; Tatrishvili, T. Interpenetrating Network on the Basis of Methylcyclotetrasiloxane Matrix. Chem. Chem. Technol. 2019, 13, 1–10. https://doi.org/10.23939/chcht13.01.001
[21] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Tatrishvili, T.; Markarashvili, E. Fluorine-Containing Siloxane Based Polymer Electrolyte Membranes. Chem. Chem. Technol. 2019, 13, 407–534. https://doi.org/10.23939/chcht13.04.407
[22] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325
[23] Guo, Q.; Dean, J. M.; Grubbs, R. B.; Bates, F. S.; Block Copolymer Modified Novolac Epoxy Resin. Polym. Sci. Ser. A: Polym. Phys. 2003, 41, 1994–2003. https://doi.org/10.1002/polb.10554
[24] Tao, Z.; Yang, S.; Ge, Z.; Chen, J.; Fan, L. Synthesis and Properties of Novel Fluorinated Epoxy Resins Based on 1,1-bis(4-glycidyllesterphenyl)-1-(3′-trifuoromethylphenyl)- 2,2,2-trifluoroethane. Eur. Polym. J. 2007, 43, 550–560. https://doi.org/10.1016/j.eurpolymj.2006.10.030
[25] Paluvai, N. R.; Mohanty, S.; Nayak, S. K. Synthesis and Modification of Epoxy Resins and their Composites: A Review. Polym. Plast. Technol. Eng. 2014, 53, 1723–1758. https://doi.org/10.1080/03602559.2014.919658
[26] Cheng, J.; Li J.; Zhang, J. Y. Curing Behavior and Thermal Properties of Trifunctional Epoxy Resin Cured by 4; 4′-Diaminodiphenyl Sulfone. Express Polym. Lett. 2009, 3, 501–509. https://doi.org/10.3144/expresspolymlett.2009.62
[27] Meenakshi, K. S.; Pradeep, E.; Sudhan, J.; Kumar, S. A. Development and Characterization of New Phosphorus Based Flame Retardant Tetraglycidyl Epoxy Nanocomposites for Aerospace Application. Bull. Mat. Sci. 2012, 35, 129–136. https://doi.org/10.1007/s12034-012-0271-0
[28] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758