Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/

Studies on cardanol-based epoxidized novolac resin and its blends

Ranjana Yadav and Deepak Srivastava
PDF icon full_text.pdf394.52 KB
Cardanol-based novolac-type phenolic resin was synthesized with a mole ratio 1.0:0.5 of cardanol-to-formaldehyde using a dicarboxylic acid catalyst such as succinic acid. The cardanol-based novolac-type phenolic resin may further be modified by epoxidation with epichlorohydrin excess at 393 K in a basic medium to duplicate the performance of such phenolic-type novolacs. Carboxyl-terminated butadiene acrylonitrile copolymer (CTBN) has been studied by various researches with diglycidyl ether of bisphenol-A (DEGBA) epoxy resin and epoxidized phenolic novolac resins. The epoxidized novolac resin was blended with different weight ratios of carboxyl-terminated butadiene acrylonitrile copolymer (CTBN) and cured with a stoichiometric amount of polyamine curing agent. The formation of various products during the synthesis of cardanol-based novolac resin, epoxodized novolac resin and blending of epoxidized novolac resin with CTBN has been studied by Fourier-transform infrared (FTIR) spectroscopic analysis. Further, the products were confirmed by a proton nuclear magnetic resonance (1H-NMR) spectroscopic analysis. The number average molecular weight was determined by a gel permeation chromatography (GPC) analysis. The blend sample, having 15 wt % CTBN concentration showed minimum cure time and most thermally stable systems.

[1] Attanasi O. and Bunatti S.: La Chimica e I'Industria, 1996, 78, 693.

[2] Prabhakaran K., Narayan A. and Pvithram C.: Eur. Cer. Soc., 2001, 21, 2873.

[3] Pillai C., Prasad V., Sudha J., Bera S. and Menon A.: J. Appl. Polym. Sci., 1990, 41, 2487.

[4] Bhunia H., Nando G., Chakib T. et al..: Euro. Polym. J., 1999, 35, 1381.

[5] Kinloch A. and Reiw C.: Rubber-Toughened Plastics Advances in Chemistry, Am. Chem. Soc., Ser 22:67, Washington DC 1989.

[6] Kinloch A. and Young R.: Fracture behaviour of polymers, Appl. Sci., London 1983.

[7] Huang J. and Kinloch A.: Polymer, 1992, 33, 1330.

[8] Huang J. and Kinloch A.: J. Mater. Sci., 1992, 27, 2763.

[9] Riew C., Rowe E. and Siebert A.: Rubber toughened thermosets: ACS meeting- symposium on toughness and brittleness of plastics, division of organic coatings and plastics Attantic city, N.J, October 18, 1974.

[10] Frigone M., Masica L. and Aciermo D.: Eur. Polym. J., 1995, 31, 1021.

[11] Tripathi G. and Srivastava D.: Mat. Sci. Eng:A, 2007, 443, 262.

[12] Pearson R. and Yee A.: J. Mater. Sci., 1989, 24, 2571.

[13] Clayton May: Epoxy resin - Chemistry and technology, Marcel Dekker, New York 1988.

[14] Knop A. and Schieb W.: Chemistry and application of phenolic resins, Springer Verlag, New York 1979.

[15] Devi A., Chandra K. and Srivastaava D.: Proceedings of the 14th National Thermal Analysis Symposium, Vadodra, India, 2004, 22.

[16] Devi A. and Srivastava D.: Mater. Sci. Eng. A, 2007, 458, 336.

[17] Urabanski J., Czer Winkski W., Janika K, Majewsta F. and Zowall H.: Handbook of analysis of synthetic polymers and plastics, Ellis Horward ltd., Chicketa 1977.

[18] Sperling G.: J. Am. Chem. Soc., 1954, 76, 1190.

[19] Sathiyalekshmi K.: Bull. Mater. Sci., 1993, 16, 137.

[20] Chakrawarti P. and Mehta V.: Ind. J. Tech., 1987, 25, 109.

[21] Mythili C., Retna A. and Gopalkrishnan S.: Bull. Mater. Sci., 2004, 27, 235.

[22] Tyman J.: Chem. Soc. Rev., 1979, 8, 499.

[23] Huang J., Xu M., Lin M., Lin Q., et al.: J. Appl. Polym. Sci., 2005, 97, 652.

[24] Kuriaposa A. and Manjooran S.: Surf. Coat. Tech., 2001, 145, 132.

[25] Lin-Gibson S., Baranauskas V., Riffle J.S. and Sorathia V.: Polymer, 2000, 43, 7389.

[26] Lee H. and Neville K.: Hand book of epoxy resins, McGraw-Hill, New York 1982.

[27] Evtushenko Yu., Ivanov V. and Zaitsev B.: J. Anal. Chem., 2003, 58, 347.

[28] Smith A.: Applied infrared spectroscopy, Wiley, NewYork 1979.

[29] Horie K., Hiura H., Sawada M., Mita I. and Kambe H.: J. Polym. Sci. A-1, 1970, 8, 1357.

[30] Ruzenberg B.: Adv. Polym. Sci., 1985, 75, 113.

[31] Wise C., Cook W. and Goodwin A.: Polymer, 2000, 41, 4625.

[32] Calabrese L. and Valenza A.: Comp. Sci. Tech., 2003, 63, 851.

[33] Cataloni A. and Bonicelli M.: Thermochimica Acta, 2005, 438, 126.

[34] Gu A. and Liang G.: J. Appl. Polym. Sci., 2003, 89, 359.

[35] Maity T., Samanta B., Dalai S. and Banthia A.: Mat. Sci. Eng: A, 2007, 464, 38.

[36] Kaji M., Nakahara K. and Endo T.: J. Appl. Polym. Sci., 1999, 74, 690.<690::AID-APP23>3.0.CO;2-X

[37] Sulton J. and Garry Mc: J. Polym. Eng. Sci., 1973, 13, 29.

[38] Verchere D., Sautereau H. and Pasculat J.: J. Appl. Polym. Sci., 1990, 41, 467.

[39] Chan L., Gillham J., Kinloch A. and Shaw S.: [in:] Riew C. and Gillham J. (eds.), Rubber-modified epoxies: morphology, transitions and mechanical properties. American Chemical Society, Washington D.C 1984, v. ACS 208.

[40] Sue H., Garciameitin E. and Pickelman D.: [in:] Arands C. (Ed.) Polymer toughening. Marcel Dekker, NewYork 1996.