State of the Art in the Production of Charcoal: a Review

Serhiy Pyshyev1, Denis Miroshnichenko2, Ivan Malik2, Aquilino Bautista Contreras3, Nader Hassan4, Ahmed Abd ElRasoul4
Affiliation: 
1 Lviv Polytechnic National University, 12, Bandera St., 79013 Lviv, Ukraine 2 National Technical University “Kharkiv Polytechnic Institute”, 2, Kirpychova St., 61002 Kharkiv, Ukraine 3 Carbosur, Calle Mexico F12, Parque Industrial Maquilador Oaxaca 2000, Magdalena Apasco Etla, C.P. 68226, Oaxaca, Mexico 4 Nader Group Engineering, Rasta Hotel, Unit 728, P.C. 42512, Port Said, Egypt dvmir79@gmail.com
DOI: 
https://doi.org/10.23939/chcht15.01.061
AttachmentSize
PDF icon full_text.pdf547.93 KB
Abstract: 
The use of charcoal (CC) for various industries was analysed; the modern ideas about the factors influencing the process of obtaining CC were considered. The effect of raw materials nature (wood or agricultural wastes) and their characteristics (size, physical properties, chemical composition), as well as carbonization temperature, heating rate, oxygen level and pressure on the yield and quality of CC was described. The existing technologies for charcoal production were analyzed; they were classified according to the type of heating initiation and temperature maintenance during the carbonization process. The Lambiotte, DPC and Carbonex technologies were considered.
References: 

[1] Altun N., Hiçyılmaz C., Kök M.: J. Anal. Appl. Pyrolysis, 2003, 67, 369. https://doi.org/10.1016/S0165-2370(02)00075-X
[2] Shuping Z., Tulong W., Minde Y. et al.: Bioresource Technol., 2010, 101, 359. https://doi.org/10.1016/j.biortech.2009.08.020
[3] Pyshyev S., Prysiazhnyi Yu., Shved M. et al.: Сrit. Rev. Envir. Sci. Tech., 2017, 24, 2387. https://doi.org/10.1080/10643389.2018.1426968
[4] Prysiazhnyi Yu., Shved M., Pyshyev S. et al.: Chem. Chem. Technol., 2018, 12, 355. https://doi.org/10.23939/chcht12.03.355
[5] Malovanyy M., Petrushka K., Petrushka I.: Chem. Chem. Technol., 2019, 13, 372. https://doi.org/10.23939/chcht13.03.372
[6] Food and Agricultural Organization. Forestry Production and Trade; FAO: Rome, Italy, 2019.
[7] WorldWildlife Fund. The Dirty Business of Barbecue Charcoal;WorldWildlife Fund: Washington, DC, USA,2019.
[8] Bailis R., Rujanavech C., Dwivedi P. et al.: Energy Sustain. Dev., 2013,17, 189. https://doi.org/10.1016/j.esd.2012.10.008
[9] Pereira E., Martins M., Pecenka R. et al.: Renew. Sustain. Energy Rev.,2017, 75, 592. https://doi.org/10.1016/j.rser.2016.11.028
[10] The Forest Trust. Charcoal TFT Research. http://www.tftearth.org/wp-content/uploads/2015/05/TFT-charcoal-research...
[11] MacroMarket. Wood Charcoal (Including Shell or Nut Charcoal). https://macro.market/product/09440200
[12] Observatory of Economic Complexity. Wood Charcoal (Including Shell or Nut Charcoal). https://oec.world/en/profile/hs92/440200/
[13] International Energy Agency. What is Energy Security? International Energy Agency: Paris, France, 2018.
[14] United States Chamber of Commerce. International Index of Energy Security Risk. Assessing Risk in a GlobalEnergy Market. https://www.globalenergyinstitute.org/sites/default/files/energyrisk_int...
[15] Industrial charcoal making. Food and agriculture organization of the United Nations. Rome, 1985, 142.
[16] Pereira B., Oliveira A., Carvalho A. et al.: Int. J. Forestry Res., 2012, 523025. https://doi.org/10.1155/2012/523025
[17] Nhuchhen D., Afzal M.: Bioengineering, 2017, 4, 7. https://doi.org/10.3390/bioengineering4010007
[18] Jigisha P., Channiwala S., Ghosal G.: Fuel, 2005, 84, 487. https://doi.org/10.1016/j.fuel.2004.10.010
[19] Briseno-Uribe K., Carrillo Parra A., Bustamante-Garcia V. et al.: Int. J. Green Energ., 2015, 12, 961. https://doi.org/10.1080/15435075.2014.891121
[20] Oyedun A., Lam K., Hui C.: Chinese J. Chem. Eng., 2012, 20, 455. https://doi.org/10.1016/S1004-9541(11)60206-1
[21] Bustos-Vanegas J., Martins M., Freitas A. et al.: Fuel, 2019, 244, 412. https://doi.org/10.1016/j.fuel.2019.01.136
[22] Somerville M., Deev A..: Renew. Energ., 2020, 151, 419. https://doi.org/10.1016/j.renene.2019.11.036
[23] Kluska J., OchnioM., Kardas D.: Waste Manage., 2020, 105, 560. https://doi.org/10.1016/j.wasman.2020.02.036
[24] Zhang X., Yuan Z., Yao Q. et al.: Bioresour. Technol., 2019, 290, 121800. https://doi.org/10.1016/j.biortech.2019.121800
[25] Takada M., Niu R., Minami E. et al.: Biomass Bioenerg., 2018, 115, 130. https://doi.org/10.1016/j.biombioe.2018.04.023
[26] Fu P., Yi W., Bai X. et al.: J. Bioresour. Technol., 2011, 102, 8211. https://doi.org/10.1016/j.biortech.2011.05.083
[27] Chun Y., Sheng G., Chiou C. et al.: Environ. Sci. Technol., 2004, 166, 500. https://doi.org/10.1021/es960481f
[28] Ahmad M., Lee S., Dou X. et al.: Bioresour. Technol., 2012, 118, 536. https://doi.org/10.1016/j.biortech.2012.05.042
[29] Demirbas A.: Energy, 1999, 24, 141. https://doi.org/10.1016/S0360-5442(98)00077-2
[30] Miranda M., Veras C., Ghesti G: Waste Manage., 2020, 103, 177. https://doi.org/10.1016/j.wasman.2019.12.025
[31] Ahmad R., Sulaiman S., Yusuf S. et al.: Platform: A Journal of Engineering, 2020, 4, 73.
[32] Tran K.-Q., Alonso M., Wang L. et al.: Energy Procedia, 2017, 105, 787. https://doi.org/10.1016/j.egypro.2017.03.390
[33] Wang L., Skreiberg O., Gronli M. et al.: Energ. Fuel., 2013, 27, 2146. https://doi.org/10.1016/j.egypro.2017.03.390
[34] Di Blasi C.: Prog. Energ. Combust., 2008, 34, 47. https://doi.org/10.1016/j.pecs.2006.12.001
[35] Bui H.-H., Wang L., Tran K.-Q. et al.: Energy Procedia, 2017, 105, 316. https://doi.org/10.1016/j.egypro.2017.03.320
[36] Liu H. et al.: Energ. Fuel., 2003, 17, 961. https://doi.org/10.1021/ef020231m
[37] Adschiri T, Kojima T, Furusawa T.: Chem. Eng. Sci., 1987, 42, 1319. https://doi.org/10.1016/0009-2509(87)85005-4
[38] Wang L., Barta-Rajnai E., Hu K.: Energy Procedia, 2017,105, 830. https://doi.org/10.1016/j.egypro.2017.03.397
[39] Rodriges T., Braghini Jr. A.: J. Anal. Appl. Pyrolysis, 2019, 143, 104670. https://doi.org/10.1016/j.jaap.2019.104670
[40] Rodriges T., Braghini Jr. A.: Renew. Sustain. Energ. Rev., 2019, 111, 170. https://doi.org/10.1016/j.rser.2019.04.080
[41] Gronli M.: Industrial production of charcoal. SINTEF Energy Research. 1999. N-7465. Trondheim. Norway.
[42] Kammen D., Lew D. (Eds.): Renewable and Appropriate Energy Report. National Renewable Energy Laboratory: University of California, Berkeley 2005.
[43] Lambiotte A.: Pat. US2289917A, Publ. July 14, 1942.
[44] Emrich W.: Handbook of Charcoal Making – the Traditional and Industrial Methods. Springer 1985. https://doi.org/10.1007/978-94-017-0450-2
45] Kajina W., Junpen A., Garivait S.: J. Sustain. Energ. Environ., 2019, 10, 19.
[46] Lucio A., Santos S.: Proceed. 2nd International Meeting on Ironmaking and 1st International Symposium on Iron Ore. ABM Publishers, Sao Luis City-Maranhao State Brazil, 2004, 2, 1133.
[47] Lucio A, Viera S: 45 Seminario de Reducao de Minerio de Ferro e Materias-primas, ABM. Rio de Janeiro 2015, RJ, Brazil.
[48] http://carbonex.fr/home.html
[49] Zola F., Colmenero J., Aragao F. et al.: Energy, 2020, 190, 116377. https://doi.org/10.1016/j.energy.2019.116377