Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Selective Removal of Mercury(II) Using Hydrogels Prepared by Gamma Radiation

Dursun Saraydın1, Ebru Şahin Yıldırım2, Erdener Karadağ3
Affiliation: 
1 Sivas Cumhuriyet University, Science Faculty, Chemistry Department, Sivas, Turkey 2 Sivas Cumhuriyet University, Imranlı Vocational School, Imranlı, Sivas, Turkey 3 Adnan Menders University, Science & Letter Faculty Chemistry Department, Aydın, Turkey saraydin@cumhuriyet.edu.tr; dsaraydin@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.03.345
AttachmentSize
PDF icon full_text.pdf933.7 KB
Abstract: 
To selectively remove mercury(II), 2-hydroxyethyl methacrylate (HM) and 2-hydroxyethyl methacrylate/acrylamide (HM/ACR) hydrogels were synthesized using radiation. These hydrogels were used in swelling, diffusion, and binding studies. Swelling parameters for HM/ACR−Hg2+ system are higher than those of HM−Hg2+ systems. Binding of Hg2+ has been observed to be C-type for HM and L-type for HM/ACR hydrogels. Binding parameters were calculated using Freundlich, Langmuir and Henry models. Effects of Hg2+ concentration, radiation dose, ACR ratio, temperature, counter ions were investigated. Binding and swelling of HM increased with the incorporation of acrylamide. HM/ACR hydrogels absorbed only Hg2+, and did not absorb heavy metal ions.
References: 

[1] https://www.atsdr.cdc.gov/spl/index.html

[2] https://www.epa.gov/mercury/basic-information-about-mercury

[3] Amde, M.; Yin, Y.; Zhang, D.; Liu, J. Methods and Recent Advances in Speciation Analysis of Mercury Chemical Species in Environmental Samples: A Review. Chem. Speciat. Bioavailab. 2016, 28, 51-65. https://doi.org/10.1080/09542299.2016.1164019
https://doi.org/10.1080/09542299.2016.1164019

[4] Mahbub, K.R.; Krishnan, K.; Naidu, R.; Andrews, S.; Megharaj, M. Mercury Toxicity to Terrestrial Biota. Ecol. Indic. 2017, 74, 451-462. https://doi.org/10.1016/j.ecolind.2016.12.004
https://doi.org/10.1016/j.ecolind.2016.12.004

[5] McNutt, M. Mercury and Health. Science 2013, 341, 1430. https://doi.org/10.1126/science.1245924
https://doi.org/10.1126/science.1245924

[6] de Almeida Rodrigues, P.; Ferrari, R.G.; dos Santos, L.N.; Conte-Junior, C.A. Mercury in Aquatic Fauna Contamination: A Systematic Review on its Dynamics and Potential Health Risks. J. Environ. Sci. 2019, 84, 205-218. https://doi.org/10.1016/j.jes.2019.02.018
https://doi.org/10.1016/j.jes.2019.02.018

[7] Natasha; Shahid, M.; Khalid, S.; Bibi, I.; Bundschuh, J.; Niazi, N.K.; Dumat, C. A Critical Review of Mercury Speciation, Bioavailability, Toxicity and Detoxification in Soil-Plant Environment: Ecotoxicology and Health Risk Assessment. Sci. Total Environ. 2020, 711, 134749. https://doi.org/10.1016/j.scitotenv.2019.134749
https://doi.org/10.1016/j.scitotenv.2019.134749

[8] Yoshino, K.; Mori, K.; Kanaya, G.; Kojima, S.; Henmi, Y.; Matsuyama, A.; Yamamoto, M. Food Sources are More İmportant than Biomagnification on Mercury Bioaccumulation in Marine Fishes. Environ. Pollut. 2020, 262, 113982. https://doi.org/10.1016/j.envpol.2020.113982
https://doi.org/10.1016/j.envpol.2020.113982

[9] Milioni, A.L.V.; Nagy, B.V.; Moura, A.L.; Zachi, E.C.; Barboni, M.T.S.; Ventura, D.F. Neurotoxic İmpact of Mercury on the Central Nervous System Evaluated by Neuropsychological Tests and on the Autonomic Nervous System Evaluated by Dynamic Pupillometry. Neurotoxicology 2017, 59, 263-269. https://doi.org/10.1016/j.neuro.2016.04.010
https://doi.org/10.1016/j.neuro.2016.04.010

[10] Huang, S.; Ma, C.; Liao, Y.; Min, C.; Du, P.; Jiang, Y. Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies. Nanomater. 2016, 2016, 7245829. https://doi.org/10.1155/2016/7245829
https://doi.org/10.1155/2016/7245829

[11] Saberi, A.; Sadeghi, M.; Alipour, E. Design of AgNPs -Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II). J. Polym. Environ. 2020, 28, 906-917. https://doi.org/10.1007/s10924-020-01651-9
https://doi.org/10.1007/s10924-020-01651-9

[12] Jamwal, H.S.; Ranote, S.; Kumar, D.; Chauhan, G.S.; Bansal, M. Gelatin-Based Mesoporous Hybrid Materials for Hg2+ İons Removal from Aqueous Solutions. Sep. Purif. Technol. 2020, 239, 116513. https://doi.org/10.1016/j.seppur.2020.116513
https://doi.org/10.1016/j.seppur.2020.116513

[13] Shalla, A.H.; Yaseen, Z.; Bhat, M.A.; Rangreez, T.A.; Maswal, M. Recent Review for Removal of Metal İons by Hydrogels. Sep. Sci. Technol. 2018, 54, 89-100. https://doi.org/10.1080/01496395.2018.1503307
https://doi.org/10.1080/01496395.2018.1503307

[14] Wang, X.; Wang, A. Adsorption Characteristics of Chitosan-g-Poly(acrylic acid)/Attapulgite Hydrogel Composite for Hg(II) Ions from Aqueous Solution. Sep. Sci. Technol. 2010, 45, 2086-2094. https://doi.org/10.1080/01496395.2010.504436
https://doi.org/10.1080/01496395.2010.504436

[15] Khozemy, E.E.; Nasef, S.M.; Mohamed, T.M. Radiation Synthesis of Superabsorbent Hydrogel (Wheat Flour/Acrylamide) for Removal of Mercury and Lead Ions from Waste Solutions. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1669-1685. https://doi.org/10.1007/s10904-019-01350-6
https://doi.org/10.1007/s10904-019-01350-6

[16] Saraydin, D.; Yildirim, E.S.; Karadağ, E.; Güven, O. Radiation-Synthesized Acrylamide/Crotonic AcidHydrogels for Selective Mercury (II) Ion Adsorption. Adv. Polym. Technol. 2016, 37, 822. https://doi.org/10.1002/adv.21725
https://doi.org/10.1002/adv.21725

[17] Darwis, D.; Erizal Abbas, B.; Nurlidar, F.; Putra, D. Radiation Processing of Polymers for Medical and Pharmaceutical Applications. Macromol. Symp. 2015, 353, 15-23. https://doi.org/10.1002/masy.201550302
https://doi.org/10.1002/masy.201550302

[18] Chmielewski, A.G.; Haji-Saeid, M.; Ahmed, S. Progress in Radiation Processing of Polymers. Nucl. Instrum. Methods Phys. Res. B 2005, 236, 44-54. https://doi.org/10.1016/j.nimb.2005.03.247
https://doi.org/10.1016/j.nimb.2005.03.247

[19] Dafader, N.C.; Adnan, M.N.; Haque, M.E.; Huq, D.; Akhtar, F. Study on the Properties of Copolymer Hydrogel Obtained from Acrylamide/2-hydroxyethyl Methacrylate by the Application of Gamma Radiation. Afr. J. Pure Appl. Chem. 2011, 5, 111-118.

[20] Güven, O.; Şen, M.; Karadağ, E.; Saraydin, D. A Review on the Radiation Synthesis of Copolymeric Hydrogels for Adsorption and Separation Purposes. Radiat. Phys. Chem. 1999, 56, 381-386. https://doi.org/10.1016/s0969-806x(99)00326-6
https://doi.org/10.1016/S0969-806X(99)00326-6

[21] Öztop, H.N.; Öztop, A.Y.; Işikver, Y.; Saraydin, D. Immobilization of Saccharomyces Cerevisiae on to Radiation Crosslinked HEMA/AAm Hydrogels for Production of Ethyl Alcohol. Process Biochem. 2002, 37, 651-657. https://doi.org/10.1016/s0032-9592(01)00254-0
https://doi.org/10.1016/S0032-9592(01)00254-0

[22] Laird, F.W.; Smith, S.A. Determination of Mercury with s -Diphenylcarbazide. Ind. Eng. Chem. Anal. Ed. 1938, 10, 576-578. https://doi.org/10.1021/ac50126a002
https://doi.org/10.1021/ac50126a002

[23] Hamdy, S.M.; El-Sigeny, S.; Abou Taleb, M.F. Immobilization of Urease on (HEMA/IA) Hydrogel Prepared by Gamma Radiation. J. Macromol. Sci. A 2008, 45, 980-987. https://doi.org/10.1080/10601320802453740
https://doi.org/10.1080/10601320802453740

[24] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-hydroxyethyl Methacrylate-co-acrylamide) Hydrogels. Polímeros 2015, 25, 547. https://doi.org/10.1590/0104-1428.2097
https://doi.org/10.1590/0104-1428.2097

[25] Kalaivani, S.S.; Vidhyadevi, T.; Murugesan, A.; Thiruvengadaravi, K.V.; Anuradha, D.; Sivanesan, S.; Ravikumar, L. The Use of New Modified Poly(acrylamide) Chelating Resin with Pendent Benzothiazole Groups Containing Donor Atoms in the Removal of Heavy Metal İons from Aqueous Solutions. Water Resour. Ind. 2014, 5, 21-35. https://doi.org/10.1016/j.wri.2014.04.001
https://doi.org/10.1016/j.wri.2014.04.001

[26] Saraydın, D.; Işıkver, Y.; Karadağ, E. A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems. J. Polym. Environ. 2018, 26, 3924-3936. https://doi.org/10.1007/s10924-018-1257-9
https://doi.org/10.1007/s10924-018-1257-9

[27] Üzüm, Ö.B.; Çetin, G.; Kundakçı, S.; Karadag, E. Swelling and Dye Adsorption Properties of Polyelectrolyte Semi-IPNs İncluding of Acrylamide/(3-Acrylamidopropyl)trimethyl Ammonium Chloride/poly(Ethylene Glycol). Sep. Sci. Technol. 2020, 55, 3307-3319. https://doi.org/10.1080/01496395.2019.1679836
https://doi.org/10.1080/01496395.2019.1679836

[28] Denizli, A.; Say, R.; Arica, M.Y. Dye Affınıty poly(2-Hydroxyethyl Methacrylate) Membranes for Removal of Heavy Metal Ions. J. Macromol. Sci. A 2000, 37, 343-356. https://doi.org/10.1081/ma-100101097
https://doi.org/10.1081/MA-100101097

[29] Türkmen, D.; Öztürk, N.; Akgöl, S.; Denizli, A. High Capacity Removal of Mercury(II) İons by poly(Hydroxyethyl Methacrylate) Nanoparticles. In Environanotechnology; Fan, M.; Huang, C-P.; Bland, A.E.; Wang, Z.; Slimane, R.; Wright, I., Eds.: Elsevier: Amsterdam, 2010; pp 23-38. https://doi.org/10.1016/B978-0-08-054820-3.00002-2
https://doi.org/10.1016/B978-0-08-054820-3.00002-2

[30] Sharma, R.K.; Chauhan, G.S. Synthesıs and Characterızatıon of Graft copolymers of 2-Hydroxyethyl Methacrylate and Some Comonomers onto Extracted Cellulose for Use ın Separatıon Technologıes. Bioresources 2009, 4, 986-1005.

[31] Sonmez, H.B.; Senkal, B.F.; Bicak, N. Poly(acrylamide) Grafts on Spherical Bead Polymers for Extremely Selective Removal of Mercuric İons from Aqueous Solutions. J. Polym. Sci. A 2002, 40, 3068-3078. https://doi.org/10.1002/pola.10392
https://doi.org/10.1002/pola.10392

[32] Senkal, B.F.; Yavuz, E. Ureasulfonamide Polymeric Sorbent for Selective Mercury Extraction. Monatsh. Chem. 2006, 137, 929-934. https://doi.org/10.1007/s00706-006-0494-0
https://doi.org/10.1007/s00706-006-0494-0

[33] Zhang, X.; Hao, Y.; Wang, X.; Chen, Z.; Li, C. Competitive Adsorption of Cadmium(II) and Mercury(II) Ions from Aqueous Solutions by Activated Carbon from Xanthoceras sorbifolia Bunge Hull. J. Chem. 2016, 2016, 4326351. https://doi.org/10.1155/2016/4326351
https://doi.org/10.1155/2016/4326351

[34] Kumar, K.; Adhikary, P.; Tungala, K.; Sonker, E.; Krishnamoorthi, S. Heavy Metals Removal by Three Arm Star Polymer Based on 2, 4, 6-Trıs Hydroxymethyl Phenol and Polyacrylamıde. RJLBPCS 2017, 3, 45-57. https://doi.org/10.26479/2017.0301.06
https://doi.org/10.26479/2017.0301.06

[35] Hayashi, T.; Mukamel, S. Two-Dimensional Vibrational Lineshapes of Amide III, II, I and A Bands in a Helical Peptide. J. Mol. Liq. 2008, 141, 149-154. https://doi.org/10.1016/j.molliq. 2008.02.013
https://doi.org/10.1016/j.molliq.2008.02.013

[36] Molyneux, P.; Vekavakayanondha, S. The İnteraction of Aromatic Compounds with poly(Vinylpyrrolidone) in Aqueous Solution. Part 5.-Binding İsotherms for Phenols and O-substituted Phenols. J. Chem. Soc., Faraday Trans.1, 1986, 2, 291-317. https://doi.org/10.1039/f19868200291
https://doi.org/10.1039/f19868200291

[37] Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal Sorption by Algal Biomass: From Batch to Continuous System. Algal Res. 2016, 18, 95-109. https://doi.org/10.1016/j.algal.2016.05.026
https://doi.org/10.1016/j.algal.2016.05.026

[38] Ho, Y.S.; Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. 1998, 76, 183-191. https://doi.org/10.1205/095758298529326
https://doi.org/10.1205/095758298529326

[39] Liu, Y.; Liu, Y.-J. Biosorption İsotherms, Kinetics and Thermodynamics. Sep. Purif. Technol. 2008, 61, 229-242. https://doi.org/10.1016/j.seppur.2007.10.002
https://doi.org/10.1016/j.seppur.2007.10.002

[40] Okeola, O.F.; Odebunmi, E.O.; Ameen, O.M. Comparison of Sorption Capacity and Surface Area of Activated Carbon Prepared from Jatropha Curcas Fruit Pericarp and Seed Coat. Bull. Chem. Soc. Ethiopia 2012, 26, 171-180. https://doi.org/10.4314/bcse.v26i2.2
https://doi.org/10.4314/bcse.v26i2.2

[41] Freundlich, H. Über die Adsorption in Lösungen. ‎Z. Phys. Chem. 1907, 57, 385-470.
https://doi.org/10.1515/zpch-1907-5723

[42] Jasim Al-Hayder, L.S.; Jasim Al-Juboory, M.H. Removal Study of İmidacloprid from Aqueous Solution by Adsorption onto Polyacrylamide Cross-Linked. J. Chem. Pharm. Res. 2015, 7, 1138-1144.

[43] Pila, A.N.; Jorge, M.J.; Romero, J.M.; Jorge, N. L.; Castro, E. A. Model Isothermal Of The Equilibrium Of The Herbicide 2,4-Dichlorophenoxyacetic Acid In Watery Phase On Soil With High Contained Organic Matter. Pinnacle Agric. Res. Manag. 2015, 3, 555-558.

[44] Giles, C.H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption İsotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755-765. https://doi.org/10.1016/0021-9797(74)90252-5
https://doi.org/10.1016/0021-9797(74)90252-5

[45] Langmuir, I. The Adsorptıon of Gases on Plane Surfaces of Glass, Mıca and Platınum. J. Am. Chem. Soc., 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
https://doi.org/10.1021/ja02242a004

[46] Khatoon, H.; Rai, J.P.N. Agrıcultural Waste Materıals as Bıosorbents for the Removal of Heavy Metals and Synthetıc Dyes- A Revıew. Oct. Jour. Env. Res. 2016, 4, 208-229.

[47] García, E.R.; Medina, R.L.; Lozano, M.M.; Hernández Pérez, I.; Valero, M.J.; Franco, A.M.M.Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate. Materials 2014, 7, 8037-8057. https://doi.org/10.3390/ma7128037
https://doi.org/10.3390/ma7128037

[48] Zhou, X.; Zhou, X. The Unıt Problem ın the Thermodynamıc Calculatıon of Adsorptıon Usıng The Langmuır Equatıon. Chem. Eng. Commun. 2014, 201, 1459-1467. https://doi.org/10.1080/00986445.2013.818541
https://doi.org/10.1080/00986445.2013.818541

[49] Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van't Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425-434. https://doi.org/10.1016/j.molliq.2018.10.048
https://doi.org/10.1016/j.molliq.2018.10.048