Research of Lime-Ash Plugging Mixtures

Vitalii Orlovskyy1, Volodymyr Bileckyy2, Myroslav Malovanyy3
Affiliation: 
1 Kharkiv National University of Urban Economy named after O. M. Becketov, 17, Marshal Bazhanov St., Kharkiv 61002, Ukraine 2 National Technical University “Kharkiv Polytechnic Institute”, 2, Kyrpychova St., Kharkiv 61002, Ukraine 3 Lviv Polytechnic National University, 12, S.Bandery St., Lviv 79013, Ukraine myroslav.mal@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.04.621
AttachmentSize
PDF icon full_text.pdf409.8 KB
Abstract: 
Lime-ash plugging mixtures (LAPM) with a density of 1450–1780 kg/m3 have been developed and studied as new and competitive plugging compositions. LAPM consisting of lime and acid fly ash were found to be expanded during setting. The composition of the products formed during LAPM hydration was determined by means of X-ray phase analysis. Kinetic curves of plugging material expansion have been obtained at the temperatures of 348–413 K. Rational temperature regimes of LAPM setting according to the criteria of strength and gas permeability of cement stone have been determined.
References: 

[1] Belokon, K.; Manidina, Y.; Fedchenok, A.; Banakh, A.; Mosiyevych L. The Physical and Mechanical Properties of Intermetallic Catalysts for the Neutralization of Carbon-Containing Components of Emission Gases. Procedia Environ. Sci. Eng. Manag. 2021, 8(1), 95-102.

[2] Kruzhilko, O.; Polukarov, O.; Vambol, S.; Vambol, V.; Khan, N.A.; Maystrenko, V.; Kalinchyk, V.P.; Khan A.H. Control of the Workplace Environment by Physical Factors and SMART Monitoring. Arch. Mater. Sci. Eng. 2020, 103(1), 18-29. https://doi.org /10.5604/01.3001.0014.1770.
https://doi.org/10.5604/01.3001.0014.1770

[3] Odnorih, Z.; Manko, R.; Malovanyy, M.; Soloviy, K. Results of Surface Water Quality Monitoring of the Western Bug River Basin in Lviv Region. J. Ecol. Eng. 2020, 21(3), 18-26. https://doi.org/10.12911/22998993/118303.
https://doi.org/10.12911/22998993/118303

[4] Popovych, V.; Telak, J.; Telak, O.; Malovanyy, M.; Yakovchuk, R.; Popovych N. Migration of Hazardous Components of Municipal Landfill Leachates into the Environment. J. Ecol. Eng. 2020, 21(1), 52-62. https://doi.org/10.12911/22998993/113246.
https://doi.org/10.12911/22998993/113246

[5] Malovanyy, A.; Plaza, E.; Trela, J.; Malovanyy, M. Combination of Ion Exchange and Partial Nitritation/Anammox Process for Ammonium Removal from Mainstream Municipal Wastewater. Water Sci. Technol. 2014, 70(1), 144-151. https://doi.org/10.2166/wst.2014.208
https://doi.org/10.2166/wst.2014.208

[6] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite Ab-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11(1), 117-124. https://doi.org/10.23939/chcht11.01.117.
https://doi.org/10.23939/chcht11.01.117

[7] Voytovych, I.; Malovanyy, M.; Zhuk, V.; Mukha, O. Facilities and Problems of Processing Organic Wastes by Family-Type Biogas Plants in Ukraine. J. Water Land Dev. 2020, 45 (IV-VI), 185-189. https://doi.org/10.24425/jwld.2020.133493.

[8] Malovanyy, M.; Lyashok, Y.; Podkopayev, S.; Povzun, O.; Kipko, O.; Kalynychenko V.; Virich, S.; Skyrda, A. Environmental technologies for use of coal mining and chemical industry wastes. Environmental Technologies for Use of Coal Mining and Chemical Industry Wastes. J. Ecol. Eng. 2020, 21(2), 95-103. https://doi.org/10.12911/22998993/116339.
https://doi.org/10.12911/22998993/116339

[9] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps And Quarries. Int. J. Foresight Innov. Policy 2020, 14(2/3/4), 248-263. https://doi.org/ 10.1504/IJFIP.2020.111239.
https://doi.org/10.1504/IJFIP.2020.10033249

[10] Tymchuk, I.; Shkvirko, O.; Sakalova, H.; Malovanyy, M.; Dabizhuk, T.; Shevchuk, O.; Matviichuk, O.; Vasylinych, T. Wastewater a Source of Nutrients for Crops Growth and Development. J. Ecol. Eng. 2020, 21(5), 88-96. https://doi.org/ 10.12911/22998993/122188.
https://doi.org/10.12911/22998993/122188

[11] Sanytsky, M.; Sobol, K.; Shcturmay, M.; Khymko, O. Low Energy Consuming Modified Composite Cements and Their Properties. Chem. Chem. Technol. 2011, 5(2), 227-230. https://doi.org/10.23939/chcht05.02.227.
https://doi.org/10.23939/chcht05.02.227

[12] Marushchak, U.; Sanytsky, M.; Pozniak, O.; Mazurak O. Peculiarities of Nanomodified Portland Systems Structure Formation. Chem. Chem. Technol. 2019, 13(4), 510-517. https://doi.org/10.23939/chcht13.04.510.
https://doi.org/10.23939/chcht13.04.510

[13] Orlovskyi, V.M. Improving the Quality of Heat-Resistant Borehole Cements. Geotechnologies 2019, 2, 16-21.

[14] Orlovskyi, V.M.; Pokhylko, A.M.; Krytskyi, V.V. Modern Borehole Cements. Geotechnologies 2018, 1, 44-52.

[15] Orlovskyi, V.M. Tamponazhni materialy, shcho rozshyriuiutsia pry tverdinni; PoltNTU im. Yu. Kondratiuka: Poltava, 2015.

[16] Salman, A. D.; Tatjána, J.; Al-Mayyahi, M. A.; Ibrahim, R. I.; Abdullah, T. A.; Khader, E. H. Improvement of Mechanical Properties of Oil Well Cement by Incorporate Nano-CaCO3 Prepared from Eggshell Waste. IOP Conference Series: Materials Science and Engineering 2020, 765(1), 012006. https://doi.org/10.1088/1757-899X/765/1/012006
https://doi.org/10.1088/1757-899X/765/1/012006

[17] Khaliq, W.; Khan, H.A. High Temperature Material Properties of Calcium Aluminate Cement Concrete. Constr. Build. Mater. 2015, 94, 475-487. https://doi.org/10.1016/j.conbuildmat.2015.07.023
https://doi.org/10.1016/j.conbuildmat.2015.07.023

[18] Adje, S.; Elkatatny, S.; Aggrey, W.N.; Abdelraouf, Y. Geopolymer as the Future Oil-Well Cement. J. Pet. Sci. Eng. 2022, 208(B), 109485. https://doi.org/10.1016/j.petrol.2021.109485.
https://doi.org/10.1016/j.petrol.2021.109485

[19] Ahday, M.; Imqam, A. Fly Ash Class C Based Geopolymer for Oil Well Cementing. J. Pet. Sci. Eng. 2019, 179, 750-757. https://doi.org/10.1016/j.petrol.2019.04.106.
https://doi.org/10.1016/j.petrol.2019.04.106

[20] Shtark, Y.; Viht, B. Tsement i izvest; Instytut budivelnykh materialiv im. Hrishmanova: Kyiv, 2008.

[21] Dvorkin, L.Y.; Skrypnyk I.H. Fizyko-khimichni i fizychni metody doslidzhennia budivelnykh materialiv; Natsionalnyi universytet vodnoho hospodarstva ta pryrodokorystuvannia: Rivne, 2006.

[22] Horskyi, V.F. Tamponazhni materialy i rozchyny; Chernivetskyi natsionalnyi universytet im. Yu. Fedkovycha: Chernivtsi, 2006.

[23] Bulatov, A.I.; Shamanov S.A. Metody ispytaniya tamponazhnykh materialov; Prosveschenie-Yug: Krasnodar, 2002.

[24] Agzamov, F.A.; Izmuhambetov, B.S.; Tokunova E.F. Khimiya tamponazhnykh i promyvochnykh rastvorov; Nedra: Saint Petersburg, 2011.

[25] Kurdowski, W. Chemia cementu i betonu; Polski cement: Kraków, 2010.

[26] Taymasov, B.T.; Klassen, V.K. Khimicheskaya tekhnologiya vyazhushchikh materialov; BGTU: Belgorod-Shymkent, 2017.

[27] Andreeva, N.A. Khimiya tsementa i vyazhushchikh veshchestv; SPbGASU: Saint Petersburg, 2011.

[28] Shmitko, E.I.; Krylova, A.V.; Shatalova, V.V. Khimiya tsementa i vyazhushchikh veshchestv; VGASU: Voronezh, 2005.

[29] Taylor, H.F.W. Cement chemistry; Thomas Telford Publishing: London, 1997.
https://doi.org/10.1680/cc.25929

[30] Brykov, A.S. Khimiya silikatnykh i kremnezemsoderzhashchikh vyazhushchih materialov; SPbGASU: Saint Petersburg, 2011.

[31] Kuzmenkov, M.I.; Kunitskaya, T.S. Vyazhushchie veshchestva i tehnologiya proizvodstva izdeliy na ikh osnove; BGTU: Minsk, 2003.

[32] Orlovskyi, V.; Malovanyy, M.; Biletskyi, V.; Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15(4), 599-607. https://doi.org/10.23939/chcht15.04.599
https://doi.org/10.23939/chcht15.04.599

[33] Pushcharovskiy, D.Yu. Rentgenografiya mineralov; Geoinformmark: Moscow, 2000.

[34] Nizamutdinov, E.A. Issledovanie Fazovogo Sostava Vysokotemperaturnogo Tsementa. Nauka, obrazovanie i kultura 2017, 20 (Tom 2), 5-6.

[35] Izotov, V.S.; Sokolova, Yu.A. Khimicheskie dobavki dlya modifikatsii betona; Paleotip: Moscow, 2006.

[36] Agzamov, F.A.; Babkov, V.V.; Karimov, I.N. O Neobkhodimoy Velichine Rasshireniya Tamponazhnykh Materialov. Territoriya neftegaz 2011, 8, 14-15. https://neftegas.info/upload/iblock/4ed/4ed2387ae553085841245adae8c369e5...

[37] Ovchinnikov, V.P.; Aksenova, N.A.; Ovchinnikov, P.V. Fiziko-khimicheskie protsessy tverdeniya, rabota v skvazhine i korroziya tsementnogo kamnya; TGNGU: Tyumen, 2011.

[38] Gorobets, L.; Verhorobina, I.; Biletskyi, V.; Krivenko, A.; Grishchenko, M.; Bulakh, O. Identification of Factors to Reduce the Energy Costs of Dispersing in Jets. EasternEuropean J. Enterp. Technol. 2020, 6(1) (108), 55-62. https://doi.org/10.15587/1729-4061.2020.217253
https://doi.org/10.15587/1729-4061.2020.217253

[39] Biletskyi, V.; Horobets, L.; Fyk, M.; Al-Sultan, M. Theoretical Background of Rock Failure at Hydraulic Seam Fracture and after Effect Analysis. Min. Miner. Depos. 2018, 12(3), 45-55. https://doi.org/10.15407/mining12.03.045
https://doi.org/10.15407/mining12.03.045