Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars

Volodymyr Gunka1, Iurii Sidun1, Olha Poliak1, Yuriy Demchuk1,2, Yuriy Prysiazhnyi1, Yurii Hrynchuk1, Iryna Drapak2, Olena Astakhova1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2 Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine volodymyr.m.hunka@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht17.04.916
AttachmentSize
PDF icon full_text.pdf272.91 KB
Abstract: 
The work is devoted to a completely new binder for asphalt-concrete mixtures, in particular, crushed stone-mastic mixtures. In the role of a binder, it is proposed to use raw materials for the production of bitumen − tars modified with a forming agent (catalyst and formalin). The paper proves the advantage of using tar modified with formalin, in comparison with standard oxidized bitumens, on the example of established physical and mechanical properties of bituminous binders and crushed-mastic asphalt concrete SMA-15.
References: 

[1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742
https://doi.org/10.3390/app9040742

[2] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631
https://doi.org/10.23939/chcht10.04si.631

[3] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
https://doi.org/10.1016/j.eurpolymj.2014.02.005

[4] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
https://doi.org/10.23939/chcht15.03.443

[5] Asphalt Institute and Eurobitume. The bitumen industry - a global perspective: production, chemistry, use, specification, and occupational exposure. Third edition; Asphalt Institute, Eurobitume: Lexigton, KY, Brussels, Belgium, 2015.

[6] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
https://doi.org/10.23939/chcht15.04.608

[7] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
https://doi.org/10.3390/ma15051774

[8] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295
https://doi.org/10.23939/chcht16.02.295

[9] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature effect on the chemical modification of bitumen with maleic anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475
https://doi.org/10.23939/chcht16.03.475

[10] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
https://doi.org/10.1007/978-3-030-27011-7_14

[11] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
https://doi.org/10.23939/chcht15.02.274

[12] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
https://doi.org/10.1007/978-3-030-57340-9_12

[13] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
https://doi.org/10.1080/14680629.2020.1808518

[14] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D.Lignite Oxidative Desulphurization: Notice 3 - Process Technological Aspects and Application of Products. Int. J. Coal Sci. 2019, 6, 63-73. https://doi.org/10.1007/s40789-018-0228-z
https://doi.org/10.1007/s40789-018-0228-z

[15] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
https://doi.org/10.3390/coatings12121934

[16] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
https://doi.org/10.23939/chcht15.03.438

[17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation Of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture For Application In Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154
https://doi.org/10.1080/14680629.2020.1828154

[18] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
https://doi.org/10.3390/su142315689

[19] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
https://doi.org/10.1016/j.ijadhadh.2022.103191

[20] NFPA 704. Standard System for the Identification of the Hazards of Materials for Emergency Response, 2022.

[21] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
https://doi.org/10.23939/chcht16.01.142

[22] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429.

[23] DSTU B V.2.7-319:2016 Asphalt mixtures and asphalt concrete for road and airfield. Test methods, 2016.

[24] DSTU B B.2.7-127:2015 Asphalt concrete mixtures and asphalt concrete with crushed stone and mastic. Technical specifications, 2015.

[25] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, K.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
https://doi.org/10.3390/coatings13071183

[26] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, Iu.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
https://doi.org/10.3390/ma15165693

[27] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019.

[28] DSTU 9169:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of resistance to stripping from mineral material, 2022.

[29] SОU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017.

[30] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitumen's, modified by adhesion promoters. Specifications, 2011.