Polymeric Composite Materials of Tribotechnical Purpose with a High Level of Physical, Mechanical and Thermal Properties

Oleh Kabat1, 2, Volodymyr Sytar1, Oleksii Derkach2, Kostyantyn Sukhyy1 (pp 543-550)
Affiliation: 
1 Ukrainian State University of Chemical Technology, 8, Gagarina Ave., Dnipro City, Ukraine; Amber_UDHTU@i.ua 2 Dnipro State Agrarian and Economic University, 25, SerhiyYefremov St., Dnipro City, Ukraine
DOI: 
https://doi.org/10.23939/chcht15.04.543
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Polymeric composites (PC) of tribological applications with a high level of physical, mechanical and thermal properties based on aromatic polyamide and silica gel have been developed. Regularities have been obtained that describe the effect of the filler content in PC on the friction coefficient, temperature on the friction surface and the intensity of linear wear rate of the studied PC-steel friction pair. It was found that the optimal silica gel content in the polymer matrix is 10 wt %. The morphology of the steel surface of friction after friction interaction with PC based on aromatic polyamide and silica gel was studied. The formation of an antifriction film on the steel surface of friction was discovered, which contributes to a decrease in the friction coefficient, temperature on the friction surface, and the linear wear intensity of the studied PC. The influence of the load and sliding speed on the main tribotechnical characteristics of the PC-steel friction pair has been studied. Mathematical laws were derived that describe the influence of the main external factors (load and sliding speed) on the friction coefficient and intensity of linear wear rate of the studied friction pair. Physical, mechanical and thermal investigations of the developed PC were carried out and it was found that the introduction of 10 wt % silica gel contributes to their 5–10 % increase.
References: 

[1] Wang H., Barrett M., Duane B.: Mater. Sci. Eng. B, 2018, 228, 167. https://doi.org/10.1016/j.mseb.2017.11.016
https://doi.org/10.1016/j.mseb.2017.11.016

[2] Chiechi R., Havenith R., Hummelen J. et al.: Mater. Today, 2013, 16, 281. https://doi.org/10.1016/j.mattod.2013.07.003
https://doi.org/10.1016/j.mattod.2013.07.003

[3] Kabat O., Sytar V., Yermachenko D. et al.: Zbirnik Nauk. Prats Dniprovskogo Nats. Univ. O. Gonchara, 2017, 23, 40.

[4] Pixiang L., Meyer J., Vaezian B., Polycarpou A.: Wear, 2016, 354, 10. https://doi.org/10.1016/j.wear.2016.02.013
https://doi.org/10.1016/j.wear.2016.02.013

[5] Belyiy V., Ludema K., Myishkin N. et al.: Tribologiya: Issledovaniya i Prilozheniya: Opyt SShA i

stran SNG, Mashinostroyeniye, Moskva 1993.

[6] Balyakin V., Hatipov S., Pilla K.: Trenie i Iznos, 2015, 36, 448.

[7] Li J., Zeng S., Liu S. et al.: Friction, 2020, 8, 301. https://doi.org/10.1007/s40544-018-0253-3
https://doi.org/10.1007/s40544-018-0253-3

[8] Kabat O., Sitar V., Suhiy K.: Polimernyi Zh., 2017, 4, 248.

[9] Burya A., Naberezhnaya O.: J. Frict. Wear, 2016, 37, 259. https://doi.org/10.3103/S106836661603003X
https://doi.org/10.3103/S106836661603003X

[10] Kabat O., Sytar V., Sukhyy K.: Chem. Chem. Technol., 2018, 12, 326. https://doi.org/10.23939/chcht12.03.326
https://doi.org/10.23939/chcht12.03.326

[11] Su C., Xue F., Xu F. et al.: J. Macromol. Sci. B, 2019, 58, 603. https://doi.org/10.1080/00222348.2019.1614276
https://doi.org/10.1080/00222348.2019.1614276

[12] Lee L.-H. (Ed.): Polymer Wear and its Control. ACS 1985. https://doi.org/10.1021/bk-1985-0287
https://doi.org/10.1021/bk-1985-0287

[13] Burya A., Chigvintseva O., Suchilina-Sokolenko S.: Polyarylaty. Sintez, Svoistva, Kompozitsionnyie Materialy, Nauka i obrazovaniye, Dnepropetrovsk 2001.

[14] Sorokin A., Goroshkov M., Naumkin A. et al.: Aviatsionnye Materialy i Tekhnologii, 2018, 1, 32.

https://doi.org/10.18577/2071-9140-2018-0-1-32-38.
https://doi.org/10.18577/2071-9140-2018-0-1-32-38

[15] Tsyiritorov Ts., Andreeva T., Peksimov O. et al.: Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2018, 11, 137.

[16] Kabat O., Kobelchuk Yu., Chervakov D., Chervakov O.: Science Technology Innovation, 2018, 2, 48. http://nti.ukrintei.ua/?page_id=1431&lang=en

[17] Pilato L.: Phenolic Resins: A Century of Progress, Springer, Berlin 2010. https://doi.org/10.1007/978-3-642-04714-5
https://doi.org/10.1007/978-3-642-04714-5

[18] Kurta S.: Napovnyuvachi - Sintez, Vlastivosti ta Vykorystannia. Vydavnytstvo Prykarp. Natsion. Univer. im. V. Stefanyka, Ivano-Frankivsk 2012.

[19] Zhang D., Sun X., Dang K. et al.: Materials, 2018, 11, 642. https://doi.org/10.3390/ma11040643
https://doi.org/10.3390/ma11040643

[20] Li D., Xie Y., Li W. et al.: Sci. World J., 2013, 320837. https://doi.org/10.1155/2013/320837
https://doi.org/10.1155/2013/320837

[21] Gogoleva O., Petrova P., Popov S., Ohlopkova A.: Trenie i Iznos, 2015, 36, 301.
https://doi.org/10.3103/S1068366615040054

[22] Burya A., Lipko E., Tomina A.-M.: Inzhenernye Nauki, 2017, 1, 122.

[23] Kabat O., Harchenko B., Derkach A. et al.: Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, 3, 116.

[24] Ayatollahi M., Monfared R., Isfahani R.: Proc. Inst. Mech. Eng. L-J. Mater. Des. Appl., 2019, 233, 874. https://doi.org/10.1177%2F1464420717714345

[25] Kabat O., Sytar V., Mitrohin A.: Tehnologicheskie Systemy, 2017, 2, 25.

[26] Sitar V., Kabat O.: Voprosy Khimii i Khimicheskoi Tekhnologii, 2005, 1, 199.

[27] Belyiy V., Sviridenok A., Petrokovets M., Savkin V.: Trenie i Iznos Materialov na Osnove Polimerov, Nauka i tekhnika, Minsk 1976.