Ozone and its Reactions with Diene Rubbers

Gennady Zaikov1, Slavcho Rakovsky2 and Metody Anachkov2
1 N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygin str., 119334 Moscow, Russia; chembio@sky.chph.ras.ru 2 Institute of Catalysis, Bulgarian Academy of Sciences, 11, G. Bonchev bl., 1113 Sofia, Bulgaria; rakovsky@ic.bas.bg
PDF icon full_text.pdf230.27 KB
The reactions of ozone with 1,4-cis-polybutadiene (SKD); Diene 35 NFA (having the following linking of the butadiene units in the rubber macromolecules: 1,4-cis (47%), 1,4-trans (42%), 1,2- (11%); 1,4-cis-polyisoprene (Carom IR 2200), 1,4-trans-polychloroprene (Denka M 40), and 1,4-trans-polyisoprene have been investigated in CCl4 solutions. The changes of the viscosity of the polymer solutions during the ozonolysis have been characterized by the number of chain scissions per molecule of reacted ozone (). The influence of the conditions of mass-transfer of the reagents in a bubble reactor on the respective  values has been discussed. The basic functional groups-products from the rubbers ozonolysis have been identified and quantitatively characterized by means of IR-spectroscopy and 1H NMR spectroscopy. A reaction mechanism that explains the formation of all identified functional groups has been proposed. It has been shown that the basic route of the reaction of ozone with elastomer double bonds – formation of normal ozonides – does not lead directly to a decrease in the molecular mass of the elastomer macromolecules, because the respective 1,2,4-trioxolanes are relatively stable at ambient temperature. The most favourable conditions for ozone degradation emerge when the cage interaction between Criеgee’s intermediates and respective carbonyl groups does not proceed. The amounts of measured different carbonyl groups have been used as an alternative way for evaluation of the intensity and efficiency of the ozone degradation. The thermal decomposition of partially ozonized diene rubbers has been investigated by DSC. The respective values of the enthalpy, the activation energy and the reaction order of the 1, 2, 4-trioxolanes have been determined.

[1] Zuev Yu.: Degradaciya Polymerov pod Deistviem Agressivnoi Sredy. Khimia, Moskwa 1972.

[2] Razumovskii S. and Zaikov G.: [in:] Scott G. (Ed.), Developments in Polymer Stabilisation, V. 6. Appl. Sci. Publ. House, London 1983.

[3] Jellinek H. (Ed.): Aspects of Degradation and Stabilisation of Polymers. Elsevier, Amsterdam 1978.

[4] Zaikov G. and Rakovsky S.: Ozonation of Organic & Polymer Compounds. Smithres Rapra, UK 2009.

[5] Sweenew G.: J .Polym. Sci. A-1, 1968, 6, 2679.

[6] Egorova G. and Shagov V.: Ozonolis v Khimii Nenasyshennykh Polimerov. Izd. LGU, Leningrad 1986.

[7] Hackathorn M. and Brock M.: Rubb. Chem. and Techn., 1972, 45, 1295.

[8] Hackathorn M. and Brock M.: J. Polym. Sci. A-1, 1968, 6, 945.

[9] Beresnev V. and Grigoriev E.: Kautchuk i Rezina, 1993, 4, 10.

[10] Nor H. and Ebdon J.: Prog. Polym. Sci., 1998, 23, 143.

[11] Solanky S. and Singh R.: Prog. Rubb. Plastics. Techn., 2001, 17, 13.

[12] Robin J.: Adv. Polym. Sci, 2004, 167, 35.

[13] Murray R. and Story P.: Ozonizatsiya v Khimicheskih Reakciyah Polimerov. Mir, Moskwa 1967.

[14] Cataldo F.: Polym. Deg. Stab., 2001, 73, 511.

[15] Montaudo G., Scamporrino E., et al.: J. Polym. Sci. A, 1992, 30, 525.

[16] Ivan G. and Giurginca M.: Polym. Deg. Stab., 1998, 62, 441.

[17] Nor H. and Ebdon J.: Polymer, 2000, 41, 2359.

[18] Somers A., Bastow T., et al.: Polym. Deg. Stab., 2000, 70, 31.

[19] Bailey P.: Ozonation in Organic Chemistry. Academic Press, New York 1978.

[20] Bunnelle W.: Chem.Rev., 1991, 91, 335.

[21] McCullough K. and Nojima M.:[in:] Ando W.: (Ed.), Organic Peroxides, Ch. 13. John Wiley & Sons Ltd, NY 1992.

[22] Anachkov M., Rakovsky S., et al.: Polym. Deg. Stab., 1985, 10, 25.

[23] Razumovskii S., Rakovsky S., Shopov D. and Zaikov G.: Ozon i ego Reakcii s Organicheskimi Komponentami. Publ. House of Bulgarian Academy of Sciences, Sofia 1983.

[24] Flory P.: Principles of Polymer Chemistry. NY 1953.

[25] Rakovsky S. and Zaikov G.: J. Appl. Polym. Sci., 2004, 91, 2048.

[26] Berlin A., Sayadyan A., et al.: Vysokomol. Soed. A, 1969, 11, 1893.

[27] Razumovskii S., Niazashvili G., et al.: Vysokomol. Soed. A, 1971, 13, 195.

[28] Razumovskii S. and Zaikov G.: Uspekhi Khimii, 1980, 49, 2344.

[29] Kefely A., Razumovskii S. et al.: Vysokomol. Soed. A, 1971, 13, 803.

[30] Rakovsky S., Cherneva D., et al.: Izv. Khim. BAN, 1976, XI, 711.

[31] Anachkov M., Rakovsky S., et al.: Polym. Deg. Stab., 1987, 19, 293.

[32] Anachkov M., Rakovsky S., et al.: J. Appl. Polym. Sci., 2007, 104, 427.

[33] The Sadtler Handbook of Proton NMR Spectra, Sadtler, Philadelphia PA, 1978.

[34] Kuczkowski R.: Chem. Soc. Rev., 1992, 21, 79.

[35] Nakanishi K.: Infrakrasnye Spektry i Struktura Organicheskikh Veshestv. Mir, Moskwa 1965.

[36] Anachkov M., Rakovsky S., et al.: Polym. Deg. Stab, 2000, 67, 355.

[37] Murray R., Kong W., et al.: J. Org. Chem., 1993, 58, 315.

[38] Choe J.-I., Sprinivasan M., et al.: J. Am. Chem. Soc., 1983, 105, 4703.

[39] Anachkov M., Rakovsky S., et al.: Polym. Deg. Stab, 1993, 41, 185.

[40] Fotty R., Rakovsky S., et al.: Oxid. Commun., 1997, 20, 411.

[41] Anachkov M., Rakovsky S., et al.: Thermochim. Acta, 1994, 237, 213.

[42] Anachkov M., Rakovsky S., et al., J. Appl. Polym. Sci., 1996, 61, 585.

[43] Anachkov M. and Rakovsky S.: Bulg. Chem. Comm., 2002, 34, 486.