Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite

Roman Konanets1, Kateryna Stepova1
Affiliation: 
1 Department of Environmental Safety, Lviv State University of Life Safety, 35 Kleparivska St., Lviv, 79007, Ukraine kateryna.stepova@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.01.094
AttachmentSize
PDF icon full_text.pdf636.62 KB
Abstract: 
The paper presents the results of the Cu2+ adsorption on natural and thermally/microwave-treated clinoptilolite and glauconite. XPS experiments were performed. The relationship between the adsorbed matter and the equilibrium concentration in wastewater is described by four two-parameter isotherm models and four three-parameter adsorption isotherm models.
References: 

[1] Barker, A. J.; Clausen, J. L.; Douglas, T. A.; Bednar, A. J.; Griggs, C. S.; Martin, W. A. Environmental Impact of Metals Resulting from Military Training Activities: A Review. Chemosphere 2021, 265, 129110. https://doi.org/10.1016/j.chemosphere.2020.129110
https://doi.org/10.1016/j.chemosphere.2020.129110

[2] Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health. 2023, 20, 3885. https://doi.org/10.3390/ijerph20053885
https://doi.org/10.3390/ijerph20053885

[3] Rathi, B. S.; Kumar, P. S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995
https://doi.org/10.1016/j.envpol.2021.116995

[4] Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
https://doi.org/10.1016/j.jenvman.2010.11.011

[5] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47(X-XII), 160-168. https://doi.org/10.24425/jwld.2020.135043
https://doi.org/10.24425/jwld.2020.135043

[6] Amin, K. F.; Gulshan, F.; Asrafuzzaman, F. N. U.; Das, H., Rashid; R., Manjura Hoque, S. Synthesis of Mesoporous Silica and Chitosan-Coated Magnetite Nanoparticles for Heavy Metal Adsorption from Wastewater. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100801. https://doi.org/10.1016/j.enmm.2023.100801
https://doi.org/10.1016/j.enmm.2023.100801

[7] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117-124. https://doi.org/10.23939/chcht11.01.117
https://doi.org/10.23939/chcht11.01.117

[8] Djebbar, M.; Djafri, F. Adsorption of Zinc Ions in Water on Natural and Treated Clay. Chem. Chem. Technol. 2018, 12, 272-278. https://doi.org/10.23939/chcht12.02.272
https://doi.org/10.23939/chcht12.02.272

[9] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267-273. https://doi.org/10.23939/chcht16.02.267
https://doi.org/10.23939/chcht16.02.267

[10] Malovanyy, M., Sakalova, H. Vasylinycz, T., Palamarchuk, O., Semchuk, J. Treatment of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman. J. Ecol. Eng. 2019, 20, 167-176. http://dx.doi.org/10.12911/22998993/102841
https://doi.org/10.12911/22998993/102841

[11] Petrushka, I.; Petrushka, K.; Bliatnyk, B. Improvement of Adsorption Processes of Wastewater Treatment from Nickel Ions. Environ. Probl. 2020, 5, 83-87. https://doi.org/10.23939/ep2020.02.083
https://doi.org/10.23939/ep2020.02.083

[12] Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: Modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. 2020, 8, 100189. https://doi.org/10.1016/j.rineng.2020.100189
https://doi.org/10.1016/j.rineng.2020.100189

[13] Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C. L.; Franscescon, F.; Freitas, L.; de Mello, J. M.; Fiori, M. A.; Oliveira, J. V.; Dal Magro, J. Adsorption of Heavy Metals from Wastewater Graphic Industry Using Clinoptilolite Zeolite as Adsorbent. Process Saf. Environ. Prot. 2017, 105, 194-200. https://doi.org/10.1016/j.psep.2016.11.008
https://doi.org/10.1016/j.psep.2016.11.008

[14] Spoljaric, N.; Crawford, W. A. Glauconitic Greensand: A Possible Filter of Heavy Metal Cations from Polluted Waters. Environ. Geol. 1978, 2, 215-221. https://doi.org/10.1007/BF02380487
https://doi.org/10.1007/BF02380487

[15] Spoljaric, N.; Crawford, W. A. Removal of Contaminants from Landfill Leachates by Filtration through Glauconitic Greensands. Environ. Geol. 1978, 2, 359-363. https://doi.org/10.1007/BF02380510
https://doi.org/10.1007/BF02380510

[16] Sysa, L. V.; Stepova, K. V.; Petrova, M. A.; Kontsur, A. Z. Microwave-Treated Bentonite for Removal of Lead from Wastewater. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 126-134. https://doi.org/10.32434/0321-4095-2019-126-5-126-134
https://doi.org/10.32434/0321-4095-2019-126-5-126-134

[17] Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6/6 (90), 26-32. https://doi.org/10.15587/1729-4061.2017.116090
https://doi.org/10.15587/1729-4061.2017.116090

[18] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
https://doi.org/10.1021/ja02242a004

[19] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-471.

[20] Hansen, J.B. Kinetics of Ammonia Synthesis and Decomposition on Heterogeneous Catalysts. In Ammonia. Nielsen, A., Ed; Springer: Berlin, Heidelberg, 1995; pp 149-190. https://doi.org/10.1007/978-3-642-79197-0_4
https://doi.org/10.1007/978-3-642-79197-0_4

[21] Kiełbasa, K.; Kamińska, A.; Niedoba, O.; Michalkiewicz, B. CO2 Adsorption on Activated Carbons Prepared from Molasses: A Comparison of Two and Three Parametric Models. Materials 2021, 14, 7458. https://doi.org/10.3390/ma14237458
https://doi.org/10.3390/ma14237458

[22] Jeppu, G.; Clement, P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129-130, 46-53. https://doi.org/10.1016/j.jconhyd.2011.12.001
https://doi.org/10.1016/j.jconhyd.2011.12.001

[23] Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024-1026. https://doi.org/10.1021/j150576a611
https://doi.org/10.1021/j150576a611

[24] Toth, J. State Equations of the Solid-Gas Interface Layer. Acta Chim. Hung. 1971, 69, 311-317.

[25] Aranovich, G.L. The Theory of Polymolecular Adsorption. Langmuir 1992, 8, 736-739. https://doi.org/10.1021/la00038a071
https://doi.org/10.1021/la00038a071

[26] Hadi, M.; Samarghandi, M. R.; McKay, G. Equilibrium Two-Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: Study of Residual Errors. Chem. Eng. J. 2010, 160, 408-416. https://doi.org/10.1016/j.cej.2010.03.016
https://doi.org/10.1016/j.cej.2010.03.016

[27] Kajama, M. N. Hydrogen Permeation Using Nanostructured Silica Membranes. WIT Trans. Ecol. Environ. 2015, 192, 447-456. https://doi.org/10.2495/SDP150381
https://doi.org/10.2495/SDP150381

[28] Dhaouadi, H.; M'Henni, F. Vat Dye Sorption onto Crude Dehydrated Sewage Sludge. J. Hazard. Mater. 2009, 164, 448-458. https://doi.org/10.1016/j.jhazmat.2008.08.029
https://doi.org/10.1016/j.jhazmat.2008.08.029

[29] Ozdes, D.; Duran, C.; Senturk, H. B.; Avan, H.; Bicer, B. Kinetics, Thermodynamics, and Equilibrium Evaluation of Adsorptive Removal of Methylene Blue onto Natural Illitic Clay Mineral. Desalin. Water Treat. 2013, 52, 208-218. https://doi.org/10.1080/19443994.2013.787554
https://doi.org/10.1080/19443994.2013.787554

[30] Özcan, A. S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA-Bentonite. J. Colloid Interface Sci. 2005, 266, 73-81. https://doi.org/10.1016/j.jcis.2004.07.035
https://doi.org/10.1016/j.jcis.2004.07.035

[31] Aharoni, C.; Tompkins, F. C. Kinetics of Adsorption and Desorption and the Elovich Equation. Adv. Catal. 1970, 21, 1-49. https://doi.org/10.1016/S0360-0564(08)60563-5
https://doi.org/10.1016/S0360-0564(08)60563-5

[32] Koble, R. A.; Corrigan, T. E. Adsorption Isotherms for Pure Hydrocarbons. Ind. Eng. Chem. 1952, 44, 383-387. https://doi.org/10.1021/ie50506a049
https://doi.org/10.1021/ie50506a049

[33] Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817
https://doi.org/10.1155/2017/3039817

[34] Le, N. C.; Van Phuc, D. Sorption of Lead (II), Cobalt (II) and Copper (II) Ions from Aqueous Solutions by γ-MnO2 Nanostructure. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025014. https://doi.org/10.1088/2043-6262/6/2/025014
https://doi.org/10.1088/2043-6262/6/2/025014

[35] Jafari Behbahani, T.J.; Jafari Behbahani, Z. A New Study on Asphaltene Adsorption in Porous Media. Pet. Coal 2014, 56, 459-466.