Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

New Solid-Solutions of Substitution Strontium (Sr) for Lead (Pb) in Apatite Structure

Mohammed A. B. Abdul Jabar1
Affiliation: 
1 College of Science, Al-Karkh University of Science, Hayfa Street, Baghdad 10001, Iraq mohammed.a.baset1980@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.04.719
AttachmentSize
PDF icon full_text.pdf1.3 MB
Abstract: 
Strontium substitution for lead in Pb(8-x)SrxNa2(PO4)6 was analyzed using XRD, SEM, and Rietveld refinement techniques. All samples were synthesized using ceramic and semi-ceramic technologies. Pure apatite was formed in the composition from x=0.00 up to x=2.75. The results indicate that the samples’ collected compositions agree with the values calculated.
References: 

[1] Ptáček P.; Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications; IntechOpen, 2016. https://doi.org/10.5772/62212
https://doi.org/10.5772/62212

[2] Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4, 542-563. https://doi.org/10.3390/ceramics4040039
https://doi.org/10.3390/ceramics4040039

[3] Al-Eesaa, N.A.; Johal, A.; Hill, R.G.; Wong, F.S.L. Fluoride Containing Bioactive Glass Composite for Orthodontic Adhesives - Apatite Formation Properties. Dent. Mater. 2018, 34, 1127-1133. https://doi.org/10.1016/j.dental.2018.04.009
https://doi.org/10.1016/j.dental.2018.04.009

[4] Nur, A.; Budiman, A.W.; Jumari, A.; Nazriati, N.; Fajaroh, F. Electrosynthesis of Ni-Co/Hydroxyapatite as a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride (NaBH4) Solutions. Chem. Chem. Technol. 2021, 15, 389-394. https://doi.org/10.23939/chcht15.03.389
https://doi.org/10.23939/chcht15.03.389

[5] Abdul Jabar, M.A.B.; Ignatov, A.V. New Synthesis of Solid-Solution Lead Hydroxyapatite (PbHAP) by Ceramic and Semi-Ceramic Methods. J. Chem. Soc. Pak. 2020, 42, 363-268. https://jcsp.org.pk/issueDetail.aspx?aid=9c56ea37-f765-416d-b62f-9ba5f29...

[6] Abdel-Aal, E.A.; Abdel-Ghafar, H.M.; El-Sayed, D.; Ewais, E.M. Synthesis of High Hardness Hydroxyapatite Particles Using Surfactant Assisted Hydrothermal Method. Int. J. Innov. Sci. Technol. 2022, 2, 35-50. https://doi.org/10.21608/IJMTI.2022.115060.1044
https://doi.org/10.21608/ijmti.2022.115060.1044

[7] Parajuli, K.; Malla, K.P.; Panchen, N.; Ganga, G.C.; Adhikari, R. Isolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization. Chem. Chem. Technol. 2022, 16, 133-141. https://doi.org/10.23939/chcht16.01.133
https://doi.org/10.23939/chcht16.01.133

[8] Abdul Halim, N.A.; Hussein, M.Z.; Kandar, M.K. Nanomaterials-Upconverted Hydroxyapatite for Bone Tissue Engineering and a Platform for Drug Delivery. Int. J. Nanomedicine 2021, 16, 6477-6496. https://doi.org/10.2147/IJN.S298936
https://doi.org/10.2147/IJN.S298936

[9] Combes, C.; Cazalbou, S.; Rey, C. Apatite Biominerals. Minerals 2016, 6, 34. https://doi.org/10.3390/min6020034
https://doi.org/10.3390/min6020034

[10 Deng, S.; Lin, Z.; Tang, H.; Ullah, S.; Bi, Y. Rapid Synthesis of Hydroxyapatite Nanoparticles via a Novel Approach in the Dual-Frequency Ultrasonic System for Specific Biomedical Application. J. Mater. Res. 2019, 34, 2796-2806. https://doi.org/10.1557/jmr.2019.119
https://doi.org/10.1557/jmr.2019.119

[11] Iconaru, S.L.; Motelica-Heino, M.; Guegan, R.; Beuran, M.; Costescu, A.; Predoi, D. Adsorption of Pb (II) Ions onto Hydroxyapatite Nanopowders in Aqueous Solutions. J. Mater. 2018, 11, 2204-2221. https://doi.org/10.3390/ma11112204
https://doi.org/10.3390/ma11112204

[12] Xin, Y.; Shirai, T. Noble-Metal-Free Hydroxyapatite Activated by Facile Mechanochemical Treatment Towards Highly-Efficient Catalytic Oxidation of Volatile Organic Compound. Sci Rep 2021, 11, 7512. https://doi.org/10.1038/s41598-021-86992-8
https://doi.org/10.1038/s41598-021-86992-8

[13] Ebadipour, N.; Paul, S.; Katryniok, B.; Dumeignil, F. Calcium Hydroxyapatite: A Highly Stable and Selective Solid Catalyst for Glycerol Polymerization. Catalysts 2021, 11, 1247. https://doi.org/10.3390/catal11101247
https://doi.org/10.3390/catal11101247

[14] Antao, S.M.; Dhaliwal, I. Lead Apatites: Structural Variations among Pb5(BO4)3Cl with B = P (Pyromorphite), As (Mimetite) and V (Vanadinite). J Synchrotron Radiat 2018, 25, 214-221. https://doi.org/10.1107/S1600577517014217
https://doi.org/10.1107/S1600577517014217

[15] Khademolhosseini, M.R.; Mobasherpour, I.; Ghahreman, D. Lead Adsorption by Nano-Hydroxyapatite Granules in a Fixed-Bed Column. Chem. Chem. Technol. 2018, 12, 372-378. https://doi.org/10.23939/chcht12.03.372
https://doi.org/10.23939/chcht12.03.372

[16] Bratychak Jr, M.; Chopyk, N.; Zemke, V. Effect of Hydroxyapatite on the Glue Line Strength of the Compositions Containing Polyvinylpirrolidone. Chem. Chem. Technol. 2016, 10, 473-478. https://doi.org/10.23939/chcht10.04.473
https://doi.org/10.23939/chcht10.04.473

[17] Zhu, Y.; Huang, B.; Zhu, Z.; Liu, H.; Huang, Y.; Zhao, X.; Liang, M. Characterization, Dissolution and Solubility of the Hydroxypyromorphite-Hydroxyapatite Solid Solution [(PbxCa1−x)5(PO4)3OH] at 25 °C and pH 2-9. Geochemical Trans. 2016, 17, 2. https://doi.org/10.1186/s12932-016-0034-8
https://doi.org/10.1186/s12932-016-0034-8

[18] Giera, A.; Manecki, M.; Bajda, T.; Rakovan, J.; Kwaśniak-Kominek, M.; Marchlewski, T. Arsenate Substitution in Lead Hydroxyl Apatites: A Raman Spectroscopic Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 152, 370-377. https://doi.org/10.1016/j.saa.2015.07.015
https://doi.org/10.1016/j.saa.2015.07.015

[19] Hopwood, J.D.; Derrick, G.R.; Brown. D.R.; Newman, C.D.; Haley, J.; Kershaw, R.; Collinge, M. The Identification and Synthesis of Lead Apatite Minerals Formed in Lead Water Pipes. J. Chem. 2016, 2016, 9074062. https://doi.org/10.1155/2016/9074062
https://doi.org/10.1155/2016/9074062

[20] Bulanov, E.N.; Petrov, S.S.; Knyazev, A.V. New Iodine-Apatites: Synthesis and Crystal Structure. Turk. J. Chem. 2021, 45, 1444-1453. https://doi.org/10.3906/kim-2102-5
https://doi.org/10.3906/kim-2102-5

[21] Mohd Pu'ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon 2019, 5, 01588. https://doi.org/10.1016/j.heliyon.2019.e01588
https://doi.org/10.1016/j.heliyon.2019.e01588

[22] Garibay-Alvarado, J.A.; Herrera-Ríos, E.B.; Vargas-Requena, C.L.; Ruíz-Baltazar, Á.J.; Reyes-López, S.Y. Cell Behavior on Silica-Hydroxyapatite Coaxial Composite. PLoS One 2021, 16, 0246256. https://doi.org/10.1371/journal.pone.0246256
https://doi.org/10.1371/journal.pone.0246256

[23] Pokhrel, S. Hydroxyapatite: Preparation, Properties and its Biomedical Applications. Adv. Chem. Engineer. Sci. 2018, 8, 225-240. https://doi.org/10.4236/aces.2018.84016
https://doi.org/10.4236/aces.2018.84016

[24] Sari, M.; Hening, P.; Chotimah; Ana, I.D.; Yusuf, Y. Bioceramic Hydroxyapatite-Based Scaffold with a Porous Structure Using Honeycomb as a Natural Polymeric Porogen for Bone Tissue Engineering. Biomater. Res. 2021, 25, 2. https://doi.org/10.1186/s40824-021-00203-z
https://doi.org/10.1186/s40824-021-00203-z

[25] Skwarek, E.; Janusz, W.; Sternik, D. The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite. Adsorp. Sci. Technol. 2017, 35, 507-518. https://doi.org/10.1177/0263617417698966
https://doi.org/10.1177/0263617417698966

[26] Ruphuy, G.; Weide, T.; Lopes, J.C.B.; Dias, M.M.; Barreiro, M.F. Preparation of Nano-Hydroxyapatite/Chitosan Aqueous Dispersions: From Lab Scale to Continuous Production Using an Innovative Static Mixer. Carbohydr. Polym. 2018, 202, 20-28. https://doi.org/10.1016/j.carbpol.2018.08.123
https://doi.org/10.1016/j.carbpol.2018.08.123

[27] Afifi, M.; El-Naggar, M.E.; Muhammad, S.; Alghamdi, N.A.; Wageh, S.; Salem, S.R.; Alhashmialameer, D.; Taleb, M.A. Nanocomposites Based on Hydroxyapatite/Lithium Oxide and Graphene Oxide Nanosheets for Medical Applications. J. Mater. Sci. 2022, 57, 11300-11316. https://doi.org/10.1007/s10853-022-07342-1
https://doi.org/10.1007/s10853-022-07342-1

[28] Sboui, N.; Agougui, H.; Jabli, M.; Boughzala, K. Synthesis, Physico-Chemical, and Structural Properties of Silicate Apatites: Effect of Synthetic Methods on Apatite Structure and Dye Removal. Inorg. Chem. Commun. 2022, 142, 109628. https://doi.org/10.1016/j.inoche.2022.109628
https://doi.org/10.1016/j.inoche.2022.109628

[29] Get'man, E.I.; Loboda, S.N.; Ignatov, A.V.; Prisedsky, V.V.; Abdul Jabar, M.A.B.; Ardanova, L.I. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6. J. Am. Chem. Soc. 2016, 55, 2165-2173. https://doi.org/10.1021/acs.inorgchem.5b02571
https://doi.org/10.1021/acs.inorgchem.5b02571

[30] Abdul Jabar, M.A.B.; Get'man, E.I.; Ignatov, A.V. New Gadolinium-Substituted Lead Sodium Apatite Structure. Funct. Mater. 2018, 25, 713-719. https://doi.org/10.15407/fm25.04.713
https://doi.org/10.15407/fm25.04.713

[31] Rafie, S.M.M.; Nordin, D. Synthesis and Characterization of Hydroxyapatite Nanoparticle. Malays. J. Anal. Sci. 2017, 21, 136-148. http://dx.doi.org/10.17576/mjas-2017-2101-16
https://doi.org/10.17576/mjas-2017-2101-16

[32] Li, Y.; Chen. C.; Jin, M.; Xiang, J.; Tang, J.; Zhao, X.; Zheng, J.; Guo, C. Multi-Mode Excited Cs2NaBiCl6 Based Double Perovskite Phosphor for Anti-Counterfeiting. J. Lumin. 2022, 247, 118915. https://doi.org/10.1016/j.jlumin.2022.118915
https://doi.org/10.1016/j.jlumin.2022.118915

[33] Abudoureheman, M.; Han, S.; Dong, X.; Lei, B.; Wang, Y.; Yang, Z.; Long, X.; Pan, S. Syntheses, Characterization and Theoretical Studies of Three Apatite-Type Phosphates MPb4(PO4)3 (M = K, Rb, Cs). J. Alloys Compd. 2017, 690, 330-336. https://doi.org/10.1016/j.jallcom.2016.08.115
https://doi.org/10.1016/j.jallcom.2016.08.115

[34] Mohammad, A.M.; Salah Eldin, T.A.; Hassan, A.M.; El-Anadouli, B.E. Efficient Treatment of Lead-Containing Wastewater by Hydroxyapatite/Chitosan Nanostructures. Arab. J. Chem. 2017, 10, 683-690. https://doi.org/10.1016/j.arabjc.2014.12.016
https://doi.org/10.1016/j.arabjc.2014.12.016

[35] Chen, D.; Zhao, J.; Jiang, X. Synthesis and Characterization of Silver Substituted Strontium Phosphate Silicate Apatite Using Solid-State Reaction for Osteoregenerative Applications. J. Bioeng. 2021, 12, 1111-1125. https://doi.org/10.1080/21655979.2021.1899670
https://doi.org/10.1080/21655979.2021.1899670

[36] El Hayek, E.; El Samrani, A. Lartiges, B.; Kazpard, V.; Aigouy, T. Lead Bioaccumulation in Opuntia ficus-indica Following Foliar or Root Exposure to Lead-Bearing Apatite. Environ. Pollut. 2017, 220, 779-787. https://doi.org/10.1016/j.envpol.2016.10.046
https://doi.org/10.1016/j.envpol.2016.10.046

[37] Coulon, A.; Laurencin, D.; Grandjean, A.; Gallet, S.L.; Minier, L.; Rossignol, S.; Campayo, L. Key Parameters for Spark Plasma Sintering of Wet-Precipitated Iodate-Substituted Hydroxyapatite. J. Eur. Ceram. Soc. 2016, 36, 2009-2016. https://doi.org/10.1016/j.jeurceramsoc.2016.02.041
https://doi.org/10.1016/j.jeurceramsoc.2016.02.041

[38] Tite, T.; Popa, A.; Balescu, L.M.; Bogdan, I.M.; Pasuk, I.; Ferreira, J.M.F.; Stan, G.E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and they're in vitro Interrogation Methods. J. Mater. 2018, 11, 2081. https://doi.org/10.3390/ma11112081
https://doi.org/10.3390/ma11112081

[39] Bulanov, E.N.; Knyazev, A.V.; Lelet, M.I. Thermodynamic Modeling of Integration of Strontium into Bone Tissue Hydroxyapatite. J. Solid State Chem. 2017, 1, 42-47. https://doi.org/10.18572/2619-0141-2017-1-1-42-47
https://doi.org/10.18572/2619-0141-2017-1-1-42-47

[40] Venkatesan, S.; Hassan, M.; Ryu, H.J. Adsorption and Immobilization of Radioactive Ionic-Corrosion-Products Using Magnetic Hydroxyapatite and Cold-Sintering for Nuclear Waste Management Applications. J. Nucl. Mater. 2019, 514, 40-49. https://doi.org/10.1016/j.jnucmat.2018.11.026
https://doi.org/10.1016/j.jnucmat.2018.11.026