Nanotechnologies for Preparation and Application of Metallic Nickel

Ivan Saldan1, 2, Oksana Dobrovetska3, Oksana Makota3
Affiliation: 
1 Ivan Franko National University of Lviv, 6 Kyryla and Mefodiia St., Lviv 79005, Ukraine 2 Pavol Jozef Šafárik University in Košice, 2 Šrobárova St., Košice 04180, Slovak Republic 3 Lviv Polytechnic National University, 12 Bandery St., Lviv 79013, Ukraine makotaoksana@yahoo.com
DOI: 
https://doi.org/10.23939/chcht16.01.074
AttachmentSize
PDF icon full_text.pdf3.18 MB
Abstract: 
Nanostructured nickel exhibits substantial surface area per unit volume and adjustable optical, electronic, magnetic, and biological properties, that makes nanofabricated nickel highly attractive as regards to its practical application in different fields of chemistry. Technologies on nickel nanomaterials including their simple preparation and modern application are summarized in this review.
References: 

[1] Scerri, E. The Periodic Table: Its Story and Its Significance; Oxford University Press: New York, 2007.

[2] Greenwood, N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997.

[3] Pfirrmann, S.; Limberg, C.; Herwig, C.; Stößer, R.; Ziemer, B. A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps. Angew. Chem. Int. Ed. 2009, 48, 3357-3361. https://doi.org/10.1002/anie.200805862
https://doi.org/10.1002/anie.200805862

[4] Roberts-Austen, W.C. The Extraction of Nickel from its Ores by the Mond Process. Nature 1898, 59, 63-64. https://doi.org/10.1038/059063a0
https://doi.org/10.1038/059063a0

[5] Housecroft, C.; Sharpe, A. Inorganic Chemistry, 4th ed; Pearson: London, 2012.

[6] Court, T.L.; Dove, M.F.A. Fluorine Compounds of Nickel(III). J. Chem. Soc., Dalton Trans. 1973, 19, 1995-1997. https://doi.org/10.1039/DT9730001995
https://doi.org/10.1039/dt9730001995

[7] Klaus, J. Dilithium-Nickel-Olefin Complexes. Novel Bimetal Complexes Containing a Transition Metal and a Main Group Metal. Angew. Chem. Int. Ed. 1975, 14, 752-753. https://doi.org/10.1002/anie.197507521
https://doi.org/10.1002/anie.197507521

[8] Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes; Kharton, V.V., Ed.; Wiley-VCH: Weinheim, 2011.

[9] Raghavendra, A. High Frequency High Amplitude Magnetic Field Driving System for Magnetostrictive Actuators. PhD Dissertation, University of Maryland, 2009.

[10] Rao, B.G.; Mukherjee, D.; Reddy, B.M. Novel approaches for preparation of nanoparticles. In Nanostructures for novel therapy: Synthesis, Characterization and Applications. Micro and Nano Technologies; Ficai, D.; Grumezescu, A.M., Eds.; Elsevier; Amsterdam, 2017; pp 1-36.
https://doi.org/10.1016/B978-0-323-46142-9.00001-3

[11] Donegan, K.P.; Godsell, J.F.; Otway, D.J.; Morris, M.A.; Roy, S.; Holmes, J.D. Size-Tuneable Synthesis of Nickel Nanoparticles. J. Nanopart. Res., 2012, 14, 670. https://doi.org/10.1007/s11051-011-0670-y
https://doi.org/10.1007/s11051-011-0670-y

[12] Zhu, W.-H.; Zhang, D.-J.; Xhang, G.-Dg.; Ke, J.-J. Sintering Preparation for Porous Plaque Containing Hollow Nickel Fiber. Mater. Res. Bull. 1995, 30, 1133-1140. https://doi.org/10.1016/0025-5408(95)00101-8
https://doi.org/10.1016/0025-5408(95)00101-8

[13] Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Tec. 2019, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
https://doi.org/10.1016/j.jddst.2019.101174

[14] Liu, X.; Guo, M.; Zhang, M.; Wang, X. Effects of PVP on the Preparation and Growth Mechanism of Monodispersed Ni Nanoparticles. Rare Metals 2008, 27, 642-647. https://doi.org/10.1016/S1001-0521(08)60198-9

[15] Wu, Z.G.; Munoz, M.; Montero, O. The Synthesis of Nickel Nanoparticles by Hydrazine Reduction. Adv. Powder Technol. 2010, 21, 165-168. https://doi.org/10.1016/j.apt.2009.10.012
https://doi.org/10.1016/j.apt.2009.10.012

[16] Nakano, K. Synthesis of Nickel Nanoparticles from Nickel Hydrazine Complex Solution Using Ultrasonication. Chem. Lett. 2016, 45, 131-133. https://doi.org/10.1246/cl.150967
https://doi.org/10.1246/cl.150967

[17] Simakova, I.L.; Simonov, M.N.; Demidova, Y.S.; Murzin, D.Y. Size-Controlled Reverse Microemulsion Synthesis of Ni and Co Metal Nanoparticles. Mater. Today 2017, 4, 11385-11391. https://doi.org/10.1016/j.matpr.2017.09.014
https://doi.org/10.1016/j.matpr.2017.09.014

[18] Wang, H.; Wu, L.; Wang, Y.; Li, X.; Wang, Y. Facile Synthesis of Ni Nanoparticles from Triangular Ni(HCO3)2 Nanosheets as Catalysts for Hydrogen Generation from Hydrous Hydrazine. Catal. Commun. 2017, 100, 33-37. https://doi.org/10.1016/j.catcom.2017.06.021
https://doi.org/10.1016/j.catcom.2017.06.021

[19] Cheng, J.; Zhang, X.; Ye, Y. Synthesis of Nickel Nanoparticles and Carbon Encapsulated Nickel Nanoparticles Supported on Carbon Nanotubes. J. Solid State Chem. 2006, 179, 91-95. https://doi.org/10.1016/j.jssc.2005.10.001
https://doi.org/10.1016/j.jssc.2005.10.001

[20] Zhang, Y.-X.; Fu, W.-J.; An, X.-Q. Preparation of Nickel Nanoparticles in Emulsion. Trans. Nonferrous Met. Soc. China 2008, 18, 212-216. https://doi.org/10.1016/S1003-6326(08)60038-2
https://doi.org/10.1016/S1003-6326(08)60038-2

[21] Li, P.; Deng, G.; Guo, X.; Liu, H.; Jiang, W.; Li, F. Preparation of Nickel and Ni3Sn Nanoparticles via Extension of Conventional Citric Acid and Ethylene Diamine Tetraacetic Acid Mediated Sol-Gel Method. J. Alloys Compd. 2016, 668, 159-168. https://doi.org/10.1016/j.jallcom.2016.01.203
https://doi.org/10.1016/j.jallcom.2016.01.203

[22] Li, M.; Chen, Y.; Ji, N.; Zeng, D.; Peng, D.-L. Preparation of Monodisperse Ni Nanoparticles and their Assembly into 3D Nanoparticle Superlattices. Mater. Chem. Phys. 2014, 147, 604-610. https://doi.org/10.1016/j.matchemphys.2014.05.036
https://doi.org/10.1016/j.matchemphys.2014.05.036

[23] Morozov, Yu.G.; Belousova, O.V.; Kuznetsov, M.V. Preparation of Nickel Nanoparticles for Catalytic Applications. Inorg. Mater. 2011, 47, 36-40. https://doi.org/10.1134/S0020168510121027
https://doi.org/10.1134/S0020168510121027

[24] Jung, J.-S.; Chae, W.-S.; McIntyre, R.A.; Seip, C.T.; Wiley, J.B.; O'Connor, C.J. Preparation and Characterization of Ni Nanoparticles in an MCM Mesoporous Material. Mater. Res. Bull. 1999, 34, 1353-1360.
https://doi.org/10.1016/S0025-5408(99)00146-4

https://doi.org/10.1016/S0025-5408(99)00146-4
https://doi.org/10.1016/S0025-5408(99)00146-4

[25] Okada, Y.; Matsumoto, S.; Kinoshita, T. Preparation of Nickel Nanoparticle-Deposited Silica Microsphere Catalysts. J. Chem. Eng. Jpn. 2019, 52, 605-609. https://doi.org/10.1252/jcej.18we313
https://doi.org/10.1252/jcej.18we313

[26] Zhang, Y.; Yang, Y.; Xiao, P.; Zhang, X.; Lu, L.; Li, L. Preparation of Ni Nanoparticle-TiO2 Nanotube Composite by Pulse Electrodeposition. Mater. Lett. 2009, 63, 2429-2431. https://doi.org/10.1016/j.matlet.2009.08.019
https://doi.org/10.1016/j.matlet.2009.08.019

[27] Wang, C.-C.; Chou, P.-H.; Yu, Y.-H.; Kei, C.-C. Deposition of Ni Nanoparticles on Black TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting by Atomic Layer Deposition. Electrochim. Acta 2018, 284, 211-219. https://doi.org/10.1016/j.electacta.2018.07.164
https://doi.org/10.1016/j.electacta.2018.07.164

[28] Atashbar, M.Z.; Bliznyuk, V.; Banerji, D.; Singamaneni, S. Deposition and Manipulation of Nickel Nanoparticles. Proceedings of International Conference on Intelligent Sensing and Information Processing (ICISIP-2004), 4-7 Jan. 2004, Chennai, India, pp 258-261. doi: 10.1109/ICISIP.2004.1287663
https://doi.org/10.1109/ICISIP.2004.1287663

[29] Chen, R.; Maclaughlin, S.; Botton, G.; Zhu, S. Preparation of Ni-g-Polymer Core-Shell Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization. Polymer 2009, 50, 4293-4298. https://doi.org/10.1016/j.polymer.2009.07.012
https://doi.org/10.1016/j.polymer.2009.07.012

[30] Li, J.; Guo, Q.; Shi, J.; Gao, X.; Feng, Z.; Fan, Z.; Liu, L. Preparation of Ni Nanoparticle-Doped Carbon Fibers. Carbon 2012, 50, 2045-2047. https://doi.org/10.1016/j.carbon.2011.12.004
https://doi.org/10.1016/j.carbon.2011.12.004

[31] Jung, K.Y.; Lee, J.H.; Koo, H.Y.; Kang, Y.C.; Park, S.B. Preparation of Solid Nickel Nanoparticles by Large-Scale Spray Pyrolysis of Ni(NO3)2•6H2O Precursor: Effect of Temperature and Nickel Acetate on the Particle Morphology. Mater. Sci. Eng. B. 2007, 137, 10-19. https://doi.org/10.1016/j.mseb.2006.09.025
https://doi.org/10.1016/j.mseb.2006.09.025

[32] Tan, M.I.S.M.H.; Omar, A.F.; Rashid, M.; Hashim, U. VIS-NIR Spectral and Particles Distribution of Au, Ag, Cu, Al and Ni Nanoparticles Synthesized in Distilled Water Using Laser Ablation. Results Phys. 2019, 14, 102497. https://doi.org/10.1016/j.rinp.2019.102497
https://doi.org/10.1016/j.rinp.2019.102497

[33] Zaitsev, A.Y.; Wilkinson, D.S.; Weatherly, G.C.; Stephenson, T.F. The Preparation of Highly Porous Structures from Filamentary Nickel Powders. J. Power Sources 2003, 123, 253-260. https://doi.org/10.1016/S0378-7753(03)00534-2
https://doi.org/10.1016/S0378-7753(03)00534-2

[34] Srivastava, D.N.; Pol, V.G.; Palchik, O.; Zhang, L.; Yu, J.C.; Gedanken, A. Preparation of Stable Porous Nickel and Cobalt Oxides Using Simple Inorganic Precursor, Instead of Alkoxides, by a Sonochemical Technique. Ultrason. Sonochem. 2005, 12, 205-212. https://doi.org/10.1016/j.ultsonch.2004.01.003
https://doi.org/10.1016/j.ultsonch.2004.01.003

[35] Zhu, P.; Zhao, Y. Cyclic Voltammetry Measurements of Electroactive Surface Area of Porous Nickel: Peak Current and Peak Charge Methods and Diffusion Layer Effect. Mater. Chem. Phys. 2019, 233, 60-67. https://doi.org/10.1016/j.matchemphys.2019.05.034
https://doi.org/10.1016/j.matchemphys.2019.05.034

[36] Tao, L.; Ying, L.; Guohua, M. Preparation of Submicro-porous Nickel Wafers by Molding-Decomposition-Sintering Method Using Nickel Oxalate Nano-Rods as Precursors. Rare Metal Mat. Eng. 2016, 45, 1396-1400. https://doi.org/10.1016/S1875-5372(16)30120-5
https://doi.org/10.1016/S1875-5372(16)30120-5

[37] Mohamed, L.Z.; Ghanem, W.A.; El-Kady, O.A.; Lotfy, M.M.; Ahmed, H.A.; Elrefaie, F.A. Oxidation Characteristics of Porous-Nickel Prepared by Powder Metallurgy and Cast-Nickel at 1273 K in Air for Total Oxidation Time of 100 h. J. Adv. Res. 2017, 8, 717-729. https://doi.org/10.1016/j.jare.2017.08.004
https://doi.org/10.1016/j.jare.2017.08.004

[38] Wu, L.-S.; Wen, X.-P.; Wen, H.; Dai, H.-B.; Wang, P. Palladium Decorated Porous Nickel Having Enhanced Electrocatalytic Performance for Hydrazine Oxidation. J. Power Sources 2019, 412, 71-77. https://doi.org/10.1016/j.jpowsour.2018.11.023
https://doi.org/10.1016/j.jpowsour.2018.11.023

[39] El Naggar, A.M.A.; Kazak, C. Preparation and Characterization of Novel Nano-Structured Porous Nickel Alloy Composite Induced by Electroless Deposition and its Performance in the Hydrogen Separation. Sep. Purif. Technol. 2016, 160, 73-80. https://doi.org/10.1016/j.seppur.2016.01.015
https://doi.org/10.1016/j.seppur.2016.01.015

[40] Sharma, A.; Hickman, J.; Gazit, N.; Rabkin, E.; Mishin, Y. Nickel Nanoparticles Set a New Record of Strength. Nat. Commun. 2018, 9, 4102. https://doi.org/10.1038/s41467-018-06575-6
https://doi.org/10.1038/s41467-018-06575-6

[41] Chen, L.; Xu, H.; Cui, H.; Zhou, H.; Wan, H.; Chen, J. Preparation of Cu-Ni Bimetallic Nanoparticles Surface-Capped with Dodecanethiol and their Tribological Properties as Lubricant Additive. Particuology 2017, 34, 89-96. https://doi.org/10.1016/j.partic.2016.12.006
https://doi.org/10.1016/j.partic.2016.12.006

[42] Lu, A.-H.; Salabas, E.L.; Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244. https://doi.org/10. 1002/anie.200602866
https://doi.org/10.1002/anie.200602866

[43] Luo, X.; Chen, Y.; Yue, G.-H.; Peng, D.-L.; Luo, X. Preparation of Hexagonal Close-Packed Nickel Nanoparticles via a Thermal Decomposition Approach Using Nickel Acetate Tetrahydrate as a Precursor. J. Alloy. Compd. 2009, 476, 864-868. https://doi.org/10.1016/j.jallcom.2008.09.117
https://doi.org/10.1016/j.jallcom.2008.09.117

[44] Zhao, S.W.; Wang, K.Y.; Wu, J.C.; Zhan, C.Y.; Zou, Y. The Mechanism of Negative and Positive Hydrogen Ions Production on the Ni Surface. Vacuum 2020, 171, 108982. https://doi.org/10.1016/j.vacuum.2019.108982
https://doi.org/10.1016/j.vacuum.2019.108982

[45] Zhang, L.; Jin, L.; Zhang, B.; Deng, W.; Pan, H.; Tang, J.; Zhu, M.; Yang, W. Multifunctional Triboelectric Nanogenerator Based on Porous Micro-Nickel Foam to Harvest Mechanical Energy. Nano Energy 2015, 16, 516-523. https://doi.org/10.1016/j.nanoen.2015.06.012
https://doi.org/10.1016/j.nanoen.2015.06.012

[46] Zhang P., Zuo F., Urban F.K.; Khabari, A.; Griffiths, P.; Hosseini-Tehrani, A. Irreversible Magnetization in Nickel Nanoparticles. J. Magn. Magn. Mater. 2001, 225, 337-345. https://doi.org/10.1016/S0304-8853(00)01379-2
https://doi.org/10.1016/S0304-8853(00)01379-2

[47] Liu, S.; Mei, J.; Zhang, C.; Zhang, J.; Shi, R. Synthesis and Magnetic Properties of Shuriken-Like Nickel Nanoparticles. J. Mater. Sci. Technol. 2018, 34, 836-841. https://doi.org/10.1016/j.jmst.2017.04.006
https://doi.org/10.1016/j.jmst.2017.04.006

[48] Singh, J.; Patel, T.; Kaurav, N.; Okram, G.S. Synthesis and Magnetic Properties of Nickel Nanoparticles. Proceed. AIP Conference, 1731, 2016, 050036. https://doi.org/10.1063/1.4947690
https://doi.org/10.1063/1.4947690

[49] Manukyan, A.S.; Avakyan, L.A.; Elsukova, A.E.; Zubavichus, Y.V.; Sulyanov, S.N.; Mirzakhanyan, A.A., Kolpacheva, N.A.; Spasova, M.; Kocharian, A.N.; Farle, M. et al. Formation of Nickel Nanoparticles and Magnetic Matrix in Nickel Phthalocyanine by Doping with Potassium. Mater. Chem. Phys. 2018, 214, 564-571. https://doi.org/10.1016/j.matchemphys.2018.04.068
https://doi.org/10.1016/j.matchemphys.2018.04.068

[50] El Komy, G.M.; Abomostafa, H.; Azab, A.A.; Selim, M.M. Innovative Synthesis of Nickel Nanoparticles in Polystyrene Matrix with Enhanced Optical and Magnetic Properties. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1983-1994. https://doi.org/10.1007/s10904-019-01157-5
https://doi.org/10.1007/s10904-019-01157-5

[51] Aneli, J.; Nadareishvili, L.; Mamniashvili, G.; Akhalkatsi, A.; Zaikov, G. Gradiently Anisotropic Conducting and Magnetic Polymer Composites. Chem. Chem. Technol. 2012, 6, 285-289. https://doi.org/10.23939/chcht06.03.285
https://doi.org/10.23939/chcht06.03.285

[52] Liu, Y.B.; Jin, R.; Qiu, J.; Liu, L.H. Spectral Radiative Properties of a Nickel Porous Microstructure and Magnetic Polariton Resonance for Light Trapping. Int. J. Heat Mass Transfer 2016, 98, 833-844. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.071
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.071

[53] Saldan, I.; Hino, S.; Humphries, T.D.; Zavorotynska, O.; Chong, M.; Jensen, C.M.; Deledda, S.; Hauback, B.C. Structural Changes Observed during the Reversible Hydrogenation of Mg(BH4)2 with Ni-Based Additives. J. Phys. Chem. C 2014, 118, 23376-23384. https://doi.org/10.1021/jp5066677
https://doi.org/10.1021/jp5066677

[54] Au, Y.S.; Yan, Y.; de Jong, K.P.; Remhof, A.; de Jongh, P.E. Pore Confined Synthesis of Magnesium Boron Hydride Nanoparticles. J. Phys. Chem. C 2014, 118, 20832-20839. https://doi.org/10.1021/jp507568p
https://doi.org/10.1021/jp507568p

[55] Ngene, P.; van Zwienen, R.; de Jongh P.E. Reversibility of the Hydrogen Desorption from LiBH4: A Synergetic Effect of Nanoconfinement and Ni Addition. Chem. Commun. 2010, 46, 8201-8203. https://doi.org/10.1039/C0CC03218B
https://doi.org/10.1039/c0cc03218b

[56] Ngene, P.; Verkuijlen M.H.W.; Zheng, Q.; Kragten, J.; van Bentum, P.J.M.; Bitter, J.H.; de Jongh., P.E. The Role of Ni in Increasing the Reversibility of the Hydrogen Release from Nanoconfined LiBH4. Faraday Discuss. 2011, 151, 47-58. https://doi.org/10.1039/c0fd00028k
https://doi.org/10.1039/c0fd00028k

[57] Saldan, I.; Burtovyy, R.; Becker, H.-W.; Ader, V.; Wöll, Ch. Ti-Ni Alloys as MH Electrodes in Ni-MH Accumulators. Int. J. Hydrog. Energy 2008, 33, 7177-7184. https://doi.org/10.1016/j.ijhydene.2008.09.002
https://doi.org/10.1016/j.ijhydene.2008.09.002

[58] Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Wöll, Ch. Surface of Ti-Ni Alloys after their Preparation. J. Alloys Compd. 2009, 470, 568-673. https://doi.org/10.1016/j.jallcom.2008.03.050
https://doi.org/10.1016/j.jallcom.2008.03.050

[59] Li, X.-J.; Song, Z.-W.; Zhao, Y.; Wang, Y.; Zhao, X.-C.; Liang, M.; Chu, W.-G.; Jiang, P.; Liu, Y. Vertically Porous Nickel Thin Film Supported Mn3O4 for Enhanced Energy Storage Performance. J. Colloid Interface Sci. 2016, 483, 17-25. https://doi.org/10.1016/j.jcis.2016.08.006
https://doi.org/10.1016/j.jcis.2016.08.006

[60] Xu, Y.; Menon, A.S.; Harks, P.-P.R.M.L.; Hermes, D.C.; Haverkate, L.A., Unnikrishnan, S.; Mulder, F.M. Honeycomb-Like Porous 3D Nickel Electrodeposition for Stable Li and Na Metal Anodes. Energy Storage Mater. 2018, 12, 69-78. https://doi.org/10.1016/j.ensm.2017.11.011
https://doi.org/10.1016/j.ensm.2017.11.011

[61] Pardillos-Guindet, J.; Metais, S.; Vidal, S.; Court, J.; Fouilloux, P. Electrode Potential of a Dispersed Raney Nickel Electrode During Acetone Hydrogenation: Influence of the Promoters. Appl. Catal. A: Gen. 1995, 132, 61-75.
https://doi.org/10.1016/0926-860X(95)00152-2

https://doi.org/10.1016/0926-860X(95)00152-2
https://doi.org/10.1016/0926-860X(95)00152-2

[62] Jiang, H.; Lu, S.; Zhang, X.; Peng, H.; Qiao, J. Preparation and Application of a Novel Raney Nickel Catalyst for Fix-Bed Reactions. Catal. Commun. 2019, 118, 60-64. https://doi.org/10.1016/j.catcom.2018.10.002
https://doi.org/10.1016/j.catcom.2018.10.002

[63] Kukula, P.; Červený, L. Preparation of Tartaric Acid Modified Raney Nickel Catalysts: Study of Modification Procedure. Appl. Catal. A: Gen. 2001, 210, 237-246. https://doi.org/10.1016/S0926-860X(00)00812-7
https://doi.org/10.1016/S0926-860X(00)00812-7

[64] Kukula, P.; Červený, L. Characterization of Chirally Modified Raney Nickel and Compounds of Tartaric Acid and Nickel. Appl. Catal. A: Gen. 2002, 223, 43-55. https://doi.org/10.1016/S0926-860X(01)00741-4
https://doi.org/10.1016/S0926-860X(01)00741-4

[65] Shim, J.; Lee, H.-K. Improved Performance of Raney Nickel Electrode by the Addition of Electrically Conductive Materials for Hydrogen Oxidation Reaction. Mater. Chem. Phys. 2001, 69, 72-76. https://doi.org/10.1016/S0254-0584(00)00349-7
https://doi.org/10.1016/S0254-0584(00)00349-7

[66] Kiros, Y.; Majari, M., Nissinen, T.A. Effect and Characterization of Dopants to Raney Nickel for Hydrogen Oxidation. J. Alloys Compd. 2003, 360, 279-285. https://doi.org/10.1016/S0925-8388(03)00346-3
https://doi.org/10.1016/S0925-8388(03)00346-3

[67] Barnard, N.C.; Brown, S.G.R.; Devred, F.; Bakker, J.W.; Nieuwenhuys, B.E.; Adkins, N.J. A Quantitative Investigation of the Structure of Raney-Ni catalyst Material Using Both Computer Simulation and Experimental Measurements. J. Catal. 2011, 281, 300-308. https://doi.org/10.1016/j.jcat.2011.05.010
https://doi.org/10.1016/j.jcat.2011.05.010

[68] Devred, F.; Reinhart, G.; Iles, G.N.; Van Der Klugt, B.; Adkins, N.J.E.; Bakker, J.W., Nieuwenhuys, B.E. Synchrotron X-Ray Microtomography of Raney-Type Nickel Catalysts Prepared by Gas Atom Isation: Effect of Microstructure on Catalytic Performance. Catal. Today 2011, 163, 13-19. https://doi.org/10.1016/j.cattod.2010.01.054
https://doi.org/10.1016/j.cattod.2010.01.054

[69] Chade, D.; Berlouis, L.; Infield, D.; Cruden, A.; Nielsen, P.T.; Mathiesen, T. Evaluation of Raney Nickel Electrodes Prepared by Atmospheric Plasma Spraying for Alkaline Water Electrolysers. Int. J. Hydrog. Energy 2013, 38, 14380-14390. https://doi.org/10.1016/j.ijhydene.2013.09.012
https://doi.org/10.1016/j.ijhydene.2013.09.012

[70] Kim, J.-E.; Bae, K.-K.; Park, C.-S.; Jeong, S.-U.; Baik, K.-H.; Kim, J.-W.; Kang, K.-S.; Lee, K.-B.; Kim, Y.-H. Electrochemical Characterization of Raney Nickel Electrodes Prepared by Atmospheric Plasma Spraying for Alkaline Water Electrolysis. J. Ind. Eng. Chem. 2019, 70, 160-168. https://doi.org/10.1016/j.jiec.2018.10.010
https://doi.org/10.1016/j.jiec.2018.10.010

[71] Wang, P.; Zhang, X.; Wie, Y.; Yang, P. Ni/NiO Nanoparticles Embedded Inporous Graphite Nanofibers Towards Enhanced Electrocatalytic Performance. Int. J. Hydrog. Energy 2019, 44, 19792-19804. https://doi.org/10.1016/j.ijhydene.2019.05.121
https://doi.org/10.1016/j.ijhydene.2019.05.121

[72] Jiang, S.; Cheng, Q.; Zou, L.; Zou, Z.; Li, Y.; Zhang, Q.; Gao, Y.; Yang, H. Ni Nanoparticles Supported on Carbon Nanosheets with Tunable N Doping Content for Hydrogen Oxidation Reaction. Chem. Phys. Lett. 2019, 728, 19-24. https://doi.org/10.1016/j.cplett.2019.04.072
https://doi.org/10.1016/j.cplett.2019.04.072

[73] Zhuang, Z.; Giles, S.A.; Zheng, J.; Jenness, G.R.; Caratzoulas, S.; Vlachos, D.G.; Yan, Y. Nickel Supported on Nitrogen-Doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte. Nat. Commun. 2016, 7, 10141. https://doi.org/10.1038/ncomms10141
https://doi.org/10.1038/ncomms10141

[74] Gao, L.; Wang, Y.; Li, H.; Li, Q.; Ta, N.; Zhuang, L.; Fu, Q.; Bao, X. A Nickel Nanocatalyst within a h-BN Shell for Enhanced Hydrogen Oxidation Reactions. Chem. Sci. 2017, 8, 5728-5734. https://doi.org/10.1039/C7SC01615H
https://doi.org/10.1039/C7SC01615H

[75] Skúlason, E.; Tripkovic, V.; Björketun, M.E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J.K. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. J. Phys. Chem. C 2010, 114, 18182-18197. https://doi.org/10.1021/jp1048887
https://doi.org/10.1021/jp1048887

[76] Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. https://doi.org/10.1149/1.1856988
https://doi.org/10.1149/1.1856988

[77] Trasatti, S. Work Function, Electronegativity, and Electrochemical Behaviour of Metals: III. Electrolytic Hydrogen Evolution in Acid Solutions. J. Electroanal. Chem. Interf. Chem. 1972, 39, 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6
https://doi.org/10.1016/S0022-0728(72)80485-6

[78] Tang, M.H.; Hahn, C.; Klobuchar, A.J.; Ng, J.W.D.; Wellendorff, J.; Bligaard, T.; Jaramillo, T.F. Nickel-Silver Alloy Electrocatalysts for Hydrogen Evolution and Oxidation in an Alkaline Electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 19250-19257. https://doi.org/10.1039/c4cp01385a
https://doi.org/10.1039/C4CP01385A

[79] Zhou, Y.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z.; Kaxiras, E.; Zhang, Z. Enhancing the Hydrogen Activation Reactivity of Nonprecious Metal Substrates via Confined Catalysis Underneath Graphene. Nano Lett. 2016, 16, 6058-6063. https://doi.org/10.1021/acs.nanolett.6b02052
https://doi.org/10.1021/acs.nanolett.6b02052

[80] Oshchepkov, A.G.; Bonnefont, A.; Saveleva, V.A.; Papaefthimiou,V.; Zafeiratos, S.; Pronkin, S.N.; Parmon, V.N.; Savinova, E.R. Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media. Top. Catal. 2016, 59, 1319-1331. https://doi.org/10.1007/s11244-016-0657-0
https://doi.org/10.1007/s11244-016-0657-0

[81] Banik, S.; Mahajan, A.; Bhattacharya, S.K. Size Control Synthesis of Pure Ni Nanoparticles and Anodic-Oxidation of Butan-1-ol in Alkali. Mater. Chem. Phys. 2019, 235, 121747. https://doi.org/10.1016/j.matchemphys.2019.121747
https://doi.org/10.1016/j.matchemphys.2019.121747

[82] Guo, X.; Liang, T.; Zhang, D.; Zhang, M.; Lin, Y.; Lai, C. Facile Fabrication of 3D Porous Nickel Networks for Electro-Oxidation of Methanol and Ethanol in Alkaline Medium. Mater. Chem. Phys. 2019, 221, 390-396.
https://doi.org/10.1016/j.matchemphys.2018.09.066

https://doi.org/10.1016/j.matchemphys.2018.09.066
https://doi.org/10.1016/j.matchemphys.2018.09.066

[83] Martins, R.; Quinello, L.; Souza, G.; Marques, M. Polymerization of Ethylene with Catalyst Mixture in the Presence of Chain Shuttling Agent. Chem. Chem. Technol. 2012, 6, 153-162. https://doi.org/10.23939/chcht06.02.153
https://doi.org/10.23939/chcht06.02.153

[84] Rocha, L.F.; Ferreira, L.C.; Marques, M.F. Synthesis and Evaluation of Arylimino Pyridine Nickel(II) Catalysts: Influence of Substituents on Polyethylene Structure. Chem. Chem. Technol. 2015, 9, 421-428. https://doi.org/10.23939/chcht09.04.421
https://doi.org/10.23939/chcht09.04.421

[85] Korchuganova, O.; Tantsiura, E.; Ozheredova, M.; Afonina, I. The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts. Chem. Chem. Technol. 2020, 14, 7-13. https://doi.org/10.23939/chcht14.01.007
https://doi.org/10.23939/chcht14.01.007

[86] Patrylak, L.; Krylova, M.; Pertko, O.; Voloshyna, Y.; Yakovenko, A. n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite. Chem. Chem. Technol. 2020, 14, 234-238. https://doi.org/10.23939/chcht14.02.234
https://doi.org/10.23939/chcht14.02.234

[87] Manukyan, K.V.; Yeghishyan, A.V.; Danghyan, V.; Rouvimov, S.; Mukasyan, A.S.; Wolf, E.E. Structural Transformations of Highly Porous Nickel Catalysts During Ethanol Conversion Towards Hydrogen. Int. J. Hydrog. Energy 2018, 43, 13225-13236. https://doi.org/10.1016/j.ijhydene.2018.04.242
https://doi.org/10.1016/j.ijhydene.2018.04.242

[88] Shafiq, Z.; Ajmal, M.; Kiran, S.; Zulfiqar, S.; Yasmeen, G.; Iqbal, M.; Farooqi, Z.H.; Ahmad, Z.; Sahiner, N.; Mahmood, K. et al. Facile Synthesis of Hydrogel-Nickel Nanoparticle Composites and their Applications in Adsorption and Catalysis. Pure Appl. Chem. 2019, 91, 1567-1582. https://doi.org/10.1515/pac-2018-1201
https://doi.org/10.1515/pac-2018-1201

[89] Ignatovich, Zh.V.; Ermolinskaya, A.L.; Katok Ya.M.; Koroleva, E.V.; Eremin, A.N.; Agabekov, V.E. Catalytic Activity of Nickel Nanoparticles in the Reaction of Reduction of Nitroarenes. Russ. J. G. Chem. 2018, 88, 410-417. https://doi.org/10.1134/S1070363218030064
https://doi.org/10.1134/S1070363218030064

[90] Brož, P.; Hejduková, M.; Vykoukal, V.; Zelenka, F.; Sopoušek, J.; Buršík, J.; Zobač, O. Study of Surface Effects and Catalytic Properties of Selected Ni-Based Bimetallic Nanoparticles by Knudsen Effusion Mass Spectrometry. Calphad 2019, 64, 334-341. https://doi.org/10.1016/j.calphad.2019.01.013
https://doi.org/10.1016/j.calphad.2019.01.013

[91] Tada, S.; Ikeda, S.; Shimoda, N.; Honma, T.; Takahashi, M.; Nariyuki, A.; Satokawa, S. Sponge Ni Catalyst with High Activity in CO2 Methanation. Int. J. Hydrog. Energy 2017, 42, 30126-30134. https://doi.org/10.1016/j.ijhydene.2017.10.138
https://doi.org/10.1016/j.ijhydene.2017.10.138

[92] Paul, W.; Sharma, C. Inorganic Nanoparticles for Targeted Drug Delivery. In Biointegration of Medical Implant Materials. 2-nd ed.; Sharma, C.P., Ed.; Woodhead Publishing Series in Biomaterials: Oxford, 2020, pp 333-373.
https://doi.org/10.1016/B978-0-08-102680-9.00013-5

[93] Hidaka, S.; Okamoto, Y.; Abe, K. Elutions of Metal Ions from Dental Casting Alloys and their Effect on Calcium Phosphate Precipitation and Transformation. J. Biomed. Mater. Res. 1994, 28, 175-180. https://doi.org/10.1002/jbm.820280206
https://doi.org/10.1002/jbm.820280206

[94] Raison-Peyron, N., Guillard, O., Khalil, Z.; Guilhou, J.-J.; Guillot, B. Nickel-Elicited Systemic Contact Dermatitis from a Peripheral Intravenous Catheter. Contact Derm. 2005, 53, 222-225. https://doi.org/10.1111/j.0105-1873.2005.00689.x
https://doi.org/10.1111/j.0105-1873.2005.00689.x

[95] Nosbaum, A.; Rival-Tringali, A.L.; Barth, X.; Damon, H.; Vital-Durand, D.; Claudy, A.; Faure, M. Nickel-Induced Systemic Allergic Dermatitis from a Sacral Neurostimulator. Contact Derm. 2008, 59, 319-320.
https://doi.org/10.1111/j.1600-0536.2008.01434.x

https://doi.org/10.1111/j.1600-0536.2008.01434.x
https://doi.org/10.1111/j.1600-0536.2008.01434.x

[96] Memon, A.A.; Molokhia, M.M.; Friedmann, P.S. The Inhibitory Effects of Topical Chelating Agents and Antioxidants on Nickel-Induced Hypersensitivity Reactions. J. Am. Acad. Dermatol. 1994, 30, 560-565.
https://doi.org/10.1016/S0190-9622(94)70062-1

https://doi.org/10.1016/s0190-9622(94)70062-1
https://doi.org/10.1016/S0190-9622(94)70062-1

[97] Wöhrl, S.; Kriechbaumer, N.; Hemmer, W.; Focke, M.; Brannath, W.; Götz, M.; Jarisch, R. A Cream Containing the Chelator DTPA (Diethylenetriaminepenta-Acetic Acid) Can Prevent Contact Allergic Reactions to Metals. Contact Derm. 2001, 44, 224-228.
https://doi.org/10.1034/j.1600-0536.2001.044004224.x

https://doi.org/10.1034/j.1600-0536.2001.044004224.x
https://doi.org/10.1034/j.1600-0536.2001.044004224.x

[98] Vemula, P.K.; Anderson, R.R.; Karp, J.M. Nanoparticles Reduce Nickel Allergy by Capturing Metal Ions. Nat. nanotechnol. 2011, 6, 291-295. https://doi.org/10.1038/nnano.2011.37
https://doi.org/10.1038/nnano.2011.37

[99] Mo, Y.; Jiang, M.; Zhang, Y.; Wan, R.; Li, J.; Zhong, C.-J.; Li, H.; Tang, S.; Zhang, Q. Comparative Mouse Lung Injury by Nickel Nanoparticles with Differential Surface Modification. J. Nanobiotechnology 2019, 17, 1.
https://doi.org/10.1186/s12951-018-0436-0

https://doi.org/10.1186/s12951-018-0436-0
https://doi.org/10.1186/s12951-018-0436-0

[100] Wang, C.-J.; Chen, T.-C.; Lin, J.-H.; Huang, P.-R.; Tsai, H.-J., Chen, C.-S. One-Step Preparation of Hydrophilic Carbon Nanofiber Containing Magnetic Ni Nanoparticles Materials and their Application in Drug Delivery. J. Colloid Interface Sci. 2015, 440, 179-188. https://doi.org/10.1016/j.jcis.2014.10.073
https://doi.org/10.1016/j.jcis.2014.10.073

[101] Gonçalves, A.A.; Araújo, A.F.; de Mesquita, J.P.; Pires, M.J.M.; Verly, R.M.; Da Silva, L.M.; Franco, D.V. Characterisation of Silica-Supported Fe-Ni Bimetallic Nanoparticles and Kinetic Study of Reductive Degradation of the Drug Nimesulide. J. Environ. Chem. Eng. 2016, 4, 4354-4365. https://doi.org/10.1016/j.jece.2016.09.038
https://doi.org/10.1016/j.jece.2016.09.038