Nanotechnologies for Preparation and Application of Metallic Nickel
Attachment | Size |
---|---|
full_text.pdf | 3.18 MB |
[1] Scerri, E. The Periodic Table: Its Story and Its Significance; Oxford University Press: New York, 2007.
[2] Greenwood, N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997.
[3] Pfirrmann, S.; Limberg, C.; Herwig, C.; Stößer, R.; Ziemer, B. A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps. Angew. Chem. Int. Ed. 2009, 48, 3357-3361. https://doi.org/10.1002/anie.200805862
https://doi.org/10.1002/anie.200805862
[4] Roberts-Austen, W.C. The Extraction of Nickel from its Ores by the Mond Process. Nature 1898, 59, 63-64. https://doi.org/10.1038/059063a0
https://doi.org/10.1038/059063a0
[5] Housecroft, C.; Sharpe, A. Inorganic Chemistry, 4th ed; Pearson: London, 2012.
[6] Court, T.L.; Dove, M.F.A. Fluorine Compounds of Nickel(III). J. Chem. Soc., Dalton Trans. 1973, 19, 1995-1997. https://doi.org/10.1039/DT9730001995
https://doi.org/10.1039/dt9730001995
[7] Klaus, J. Dilithium-Nickel-Olefin Complexes. Novel Bimetal Complexes Containing a Transition Metal and a Main Group Metal. Angew. Chem. Int. Ed. 1975, 14, 752-753. https://doi.org/10.1002/anie.197507521
https://doi.org/10.1002/anie.197507521
[8] Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes; Kharton, V.V., Ed.; Wiley-VCH: Weinheim, 2011.
[9] Raghavendra, A. High Frequency High Amplitude Magnetic Field Driving System for Magnetostrictive Actuators. PhD Dissertation, University of Maryland, 2009.
[10] Rao, B.G.; Mukherjee, D.; Reddy, B.M. Novel approaches for preparation of nanoparticles. In Nanostructures for novel therapy: Synthesis, Characterization and Applications. Micro and Nano Technologies; Ficai, D.; Grumezescu, A.M., Eds.; Elsevier; Amsterdam, 2017; pp 1-36.
https://doi.org/10.1016/B978-0-323-46142-9.00001-3
[11] Donegan, K.P.; Godsell, J.F.; Otway, D.J.; Morris, M.A.; Roy, S.; Holmes, J.D. Size-Tuneable Synthesis of Nickel Nanoparticles. J. Nanopart. Res., 2012, 14, 670. https://doi.org/10.1007/s11051-011-0670-y
https://doi.org/10.1007/s11051-011-0670-y
[12] Zhu, W.-H.; Zhang, D.-J.; Xhang, G.-Dg.; Ke, J.-J. Sintering Preparation for Porous Plaque Containing Hollow Nickel Fiber. Mater. Res. Bull. 1995, 30, 1133-1140. https://doi.org/10.1016/0025-5408(95)00101-8
https://doi.org/10.1016/0025-5408(95)00101-8
[13] Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Tec. 2019, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
https://doi.org/10.1016/j.jddst.2019.101174
[14] Liu, X.; Guo, M.; Zhang, M.; Wang, X. Effects of PVP on the Preparation and Growth Mechanism of Monodispersed Ni Nanoparticles. Rare Metals 2008, 27, 642-647. https://doi.org/10.1016/S1001-0521(08)60198-9
[15] Wu, Z.G.; Munoz, M.; Montero, O. The Synthesis of Nickel Nanoparticles by Hydrazine Reduction. Adv. Powder Technol. 2010, 21, 165-168. https://doi.org/10.1016/j.apt.2009.10.012
https://doi.org/10.1016/j.apt.2009.10.012
[16] Nakano, K. Synthesis of Nickel Nanoparticles from Nickel Hydrazine Complex Solution Using Ultrasonication. Chem. Lett. 2016, 45, 131-133. https://doi.org/10.1246/cl.150967
https://doi.org/10.1246/cl.150967
[17] Simakova, I.L.; Simonov, M.N.; Demidova, Y.S.; Murzin, D.Y. Size-Controlled Reverse Microemulsion Synthesis of Ni and Co Metal Nanoparticles. Mater. Today 2017, 4, 11385-11391. https://doi.org/10.1016/j.matpr.2017.09.014
https://doi.org/10.1016/j.matpr.2017.09.014
[18] Wang, H.; Wu, L.; Wang, Y.; Li, X.; Wang, Y. Facile Synthesis of Ni Nanoparticles from Triangular Ni(HCO3)2 Nanosheets as Catalysts for Hydrogen Generation from Hydrous Hydrazine. Catal. Commun. 2017, 100, 33-37. https://doi.org/10.1016/j.catcom.2017.06.021
https://doi.org/10.1016/j.catcom.2017.06.021
[19] Cheng, J.; Zhang, X.; Ye, Y. Synthesis of Nickel Nanoparticles and Carbon Encapsulated Nickel Nanoparticles Supported on Carbon Nanotubes. J. Solid State Chem. 2006, 179, 91-95. https://doi.org/10.1016/j.jssc.2005.10.001
https://doi.org/10.1016/j.jssc.2005.10.001
[20] Zhang, Y.-X.; Fu, W.-J.; An, X.-Q. Preparation of Nickel Nanoparticles in Emulsion. Trans. Nonferrous Met. Soc. China 2008, 18, 212-216. https://doi.org/10.1016/S1003-6326(08)60038-2
https://doi.org/10.1016/S1003-6326(08)60038-2
[21] Li, P.; Deng, G.; Guo, X.; Liu, H.; Jiang, W.; Li, F. Preparation of Nickel and Ni3Sn Nanoparticles via Extension of Conventional Citric Acid and Ethylene Diamine Tetraacetic Acid Mediated Sol-Gel Method. J. Alloys Compd. 2016, 668, 159-168. https://doi.org/10.1016/j.jallcom.2016.01.203
https://doi.org/10.1016/j.jallcom.2016.01.203
[22] Li, M.; Chen, Y.; Ji, N.; Zeng, D.; Peng, D.-L. Preparation of Monodisperse Ni Nanoparticles and their Assembly into 3D Nanoparticle Superlattices. Mater. Chem. Phys. 2014, 147, 604-610. https://doi.org/10.1016/j.matchemphys.2014.05.036
https://doi.org/10.1016/j.matchemphys.2014.05.036
[23] Morozov, Yu.G.; Belousova, O.V.; Kuznetsov, M.V. Preparation of Nickel Nanoparticles for Catalytic Applications. Inorg. Mater. 2011, 47, 36-40. https://doi.org/10.1134/S0020168510121027
https://doi.org/10.1134/S0020168510121027
[24] Jung, J.-S.; Chae, W.-S.; McIntyre, R.A.; Seip, C.T.; Wiley, J.B.; O'Connor, C.J. Preparation and Characterization of Ni Nanoparticles in an MCM Mesoporous Material. Mater. Res. Bull. 1999, 34, 1353-1360.
https://doi.org/10.1016/S0025-5408(99)00146-4
https://doi.org/10.1016/S0025-5408(99)00146-4
https://doi.org/10.1016/S0025-5408(99)00146-4
[25] Okada, Y.; Matsumoto, S.; Kinoshita, T. Preparation of Nickel Nanoparticle-Deposited Silica Microsphere Catalysts. J. Chem. Eng. Jpn. 2019, 52, 605-609. https://doi.org/10.1252/jcej.18we313
https://doi.org/10.1252/jcej.18we313
[26] Zhang, Y.; Yang, Y.; Xiao, P.; Zhang, X.; Lu, L.; Li, L. Preparation of Ni Nanoparticle-TiO2 Nanotube Composite by Pulse Electrodeposition. Mater. Lett. 2009, 63, 2429-2431. https://doi.org/10.1016/j.matlet.2009.08.019
https://doi.org/10.1016/j.matlet.2009.08.019
[27] Wang, C.-C.; Chou, P.-H.; Yu, Y.-H.; Kei, C.-C. Deposition of Ni Nanoparticles on Black TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting by Atomic Layer Deposition. Electrochim. Acta 2018, 284, 211-219. https://doi.org/10.1016/j.electacta.2018.07.164
https://doi.org/10.1016/j.electacta.2018.07.164
[28] Atashbar, M.Z.; Bliznyuk, V.; Banerji, D.; Singamaneni, S. Deposition and Manipulation of Nickel Nanoparticles. Proceedings of International Conference on Intelligent Sensing and Information Processing (ICISIP-2004), 4-7 Jan. 2004, Chennai, India, pp 258-261. doi: 10.1109/ICISIP.2004.1287663
https://doi.org/10.1109/ICISIP.2004.1287663
[29] Chen, R.; Maclaughlin, S.; Botton, G.; Zhu, S. Preparation of Ni-g-Polymer Core-Shell Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization. Polymer 2009, 50, 4293-4298. https://doi.org/10.1016/j.polymer.2009.07.012
https://doi.org/10.1016/j.polymer.2009.07.012
[30] Li, J.; Guo, Q.; Shi, J.; Gao, X.; Feng, Z.; Fan, Z.; Liu, L. Preparation of Ni Nanoparticle-Doped Carbon Fibers. Carbon 2012, 50, 2045-2047. https://doi.org/10.1016/j.carbon.2011.12.004
https://doi.org/10.1016/j.carbon.2011.12.004
[31] Jung, K.Y.; Lee, J.H.; Koo, H.Y.; Kang, Y.C.; Park, S.B. Preparation of Solid Nickel Nanoparticles by Large-Scale Spray Pyrolysis of Ni(NO3)2•6H2O Precursor: Effect of Temperature and Nickel Acetate on the Particle Morphology. Mater. Sci. Eng. B. 2007, 137, 10-19. https://doi.org/10.1016/j.mseb.2006.09.025
https://doi.org/10.1016/j.mseb.2006.09.025
[32] Tan, M.I.S.M.H.; Omar, A.F.; Rashid, M.; Hashim, U. VIS-NIR Spectral and Particles Distribution of Au, Ag, Cu, Al and Ni Nanoparticles Synthesized in Distilled Water Using Laser Ablation. Results Phys. 2019, 14, 102497. https://doi.org/10.1016/j.rinp.2019.102497
https://doi.org/10.1016/j.rinp.2019.102497
[33] Zaitsev, A.Y.; Wilkinson, D.S.; Weatherly, G.C.; Stephenson, T.F. The Preparation of Highly Porous Structures from Filamentary Nickel Powders. J. Power Sources 2003, 123, 253-260. https://doi.org/10.1016/S0378-7753(03)00534-2
https://doi.org/10.1016/S0378-7753(03)00534-2
[34] Srivastava, D.N.; Pol, V.G.; Palchik, O.; Zhang, L.; Yu, J.C.; Gedanken, A. Preparation of Stable Porous Nickel and Cobalt Oxides Using Simple Inorganic Precursor, Instead of Alkoxides, by a Sonochemical Technique. Ultrason. Sonochem. 2005, 12, 205-212. https://doi.org/10.1016/j.ultsonch.2004.01.003
https://doi.org/10.1016/j.ultsonch.2004.01.003
[35] Zhu, P.; Zhao, Y. Cyclic Voltammetry Measurements of Electroactive Surface Area of Porous Nickel: Peak Current and Peak Charge Methods and Diffusion Layer Effect. Mater. Chem. Phys. 2019, 233, 60-67. https://doi.org/10.1016/j.matchemphys.2019.05.034
https://doi.org/10.1016/j.matchemphys.2019.05.034
[36] Tao, L.; Ying, L.; Guohua, M. Preparation of Submicro-porous Nickel Wafers by Molding-Decomposition-Sintering Method Using Nickel Oxalate Nano-Rods as Precursors. Rare Metal Mat. Eng. 2016, 45, 1396-1400. https://doi.org/10.1016/S1875-5372(16)30120-5
https://doi.org/10.1016/S1875-5372(16)30120-5
[37] Mohamed, L.Z.; Ghanem, W.A.; El-Kady, O.A.; Lotfy, M.M.; Ahmed, H.A.; Elrefaie, F.A. Oxidation Characteristics of Porous-Nickel Prepared by Powder Metallurgy and Cast-Nickel at 1273 K in Air for Total Oxidation Time of 100 h. J. Adv. Res. 2017, 8, 717-729. https://doi.org/10.1016/j.jare.2017.08.004
https://doi.org/10.1016/j.jare.2017.08.004
[38] Wu, L.-S.; Wen, X.-P.; Wen, H.; Dai, H.-B.; Wang, P. Palladium Decorated Porous Nickel Having Enhanced Electrocatalytic Performance for Hydrazine Oxidation. J. Power Sources 2019, 412, 71-77. https://doi.org/10.1016/j.jpowsour.2018.11.023
https://doi.org/10.1016/j.jpowsour.2018.11.023
[39] El Naggar, A.M.A.; Kazak, C. Preparation and Characterization of Novel Nano-Structured Porous Nickel Alloy Composite Induced by Electroless Deposition and its Performance in the Hydrogen Separation. Sep. Purif. Technol. 2016, 160, 73-80. https://doi.org/10.1016/j.seppur.2016.01.015
https://doi.org/10.1016/j.seppur.2016.01.015
[40] Sharma, A.; Hickman, J.; Gazit, N.; Rabkin, E.; Mishin, Y. Nickel Nanoparticles Set a New Record of Strength. Nat. Commun. 2018, 9, 4102. https://doi.org/10.1038/s41467-018-06575-6
https://doi.org/10.1038/s41467-018-06575-6
[41] Chen, L.; Xu, H.; Cui, H.; Zhou, H.; Wan, H.; Chen, J. Preparation of Cu-Ni Bimetallic Nanoparticles Surface-Capped with Dodecanethiol and their Tribological Properties as Lubricant Additive. Particuology 2017, 34, 89-96. https://doi.org/10.1016/j.partic.2016.12.006
https://doi.org/10.1016/j.partic.2016.12.006
[42] Lu, A.-H.; Salabas, E.L.; Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244. https://doi.org/10. 1002/anie.200602866
https://doi.org/10.1002/anie.200602866
[43] Luo, X.; Chen, Y.; Yue, G.-H.; Peng, D.-L.; Luo, X. Preparation of Hexagonal Close-Packed Nickel Nanoparticles via a Thermal Decomposition Approach Using Nickel Acetate Tetrahydrate as a Precursor. J. Alloy. Compd. 2009, 476, 864-868. https://doi.org/10.1016/j.jallcom.2008.09.117
https://doi.org/10.1016/j.jallcom.2008.09.117
[44] Zhao, S.W.; Wang, K.Y.; Wu, J.C.; Zhan, C.Y.; Zou, Y. The Mechanism of Negative and Positive Hydrogen Ions Production on the Ni Surface. Vacuum 2020, 171, 108982. https://doi.org/10.1016/j.vacuum.2019.108982
https://doi.org/10.1016/j.vacuum.2019.108982
[45] Zhang, L.; Jin, L.; Zhang, B.; Deng, W.; Pan, H.; Tang, J.; Zhu, M.; Yang, W. Multifunctional Triboelectric Nanogenerator Based on Porous Micro-Nickel Foam to Harvest Mechanical Energy. Nano Energy 2015, 16, 516-523. https://doi.org/10.1016/j.nanoen.2015.06.012
https://doi.org/10.1016/j.nanoen.2015.06.012
[46] Zhang P., Zuo F., Urban F.K.; Khabari, A.; Griffiths, P.; Hosseini-Tehrani, A. Irreversible Magnetization in Nickel Nanoparticles. J. Magn. Magn. Mater. 2001, 225, 337-345. https://doi.org/10.1016/S0304-8853(00)01379-2
https://doi.org/10.1016/S0304-8853(00)01379-2
[47] Liu, S.; Mei, J.; Zhang, C.; Zhang, J.; Shi, R. Synthesis and Magnetic Properties of Shuriken-Like Nickel Nanoparticles. J. Mater. Sci. Technol. 2018, 34, 836-841. https://doi.org/10.1016/j.jmst.2017.04.006
https://doi.org/10.1016/j.jmst.2017.04.006
[48] Singh, J.; Patel, T.; Kaurav, N.; Okram, G.S. Synthesis and Magnetic Properties of Nickel Nanoparticles. Proceed. AIP Conference, 1731, 2016, 050036. https://doi.org/10.1063/1.4947690
https://doi.org/10.1063/1.4947690
[49] Manukyan, A.S.; Avakyan, L.A.; Elsukova, A.E.; Zubavichus, Y.V.; Sulyanov, S.N.; Mirzakhanyan, A.A., Kolpacheva, N.A.; Spasova, M.; Kocharian, A.N.; Farle, M. et al. Formation of Nickel Nanoparticles and Magnetic Matrix in Nickel Phthalocyanine by Doping with Potassium. Mater. Chem. Phys. 2018, 214, 564-571. https://doi.org/10.1016/j.matchemphys.2018.04.068
https://doi.org/10.1016/j.matchemphys.2018.04.068
[50] El Komy, G.M.; Abomostafa, H.; Azab, A.A.; Selim, M.M. Innovative Synthesis of Nickel Nanoparticles in Polystyrene Matrix with Enhanced Optical and Magnetic Properties. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1983-1994. https://doi.org/10.1007/s10904-019-01157-5
https://doi.org/10.1007/s10904-019-01157-5
[51] Aneli, J.; Nadareishvili, L.; Mamniashvili, G.; Akhalkatsi, A.; Zaikov, G. Gradiently Anisotropic Conducting and Magnetic Polymer Composites. Chem. Chem. Technol. 2012, 6, 285-289. https://doi.org/10.23939/chcht06.03.285
https://doi.org/10.23939/chcht06.03.285
[52] Liu, Y.B.; Jin, R.; Qiu, J.; Liu, L.H. Spectral Radiative Properties of a Nickel Porous Microstructure and Magnetic Polariton Resonance for Light Trapping. Int. J. Heat Mass Transfer 2016, 98, 833-844. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.071
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.071
[53] Saldan, I.; Hino, S.; Humphries, T.D.; Zavorotynska, O.; Chong, M.; Jensen, C.M.; Deledda, S.; Hauback, B.C. Structural Changes Observed during the Reversible Hydrogenation of Mg(BH4)2 with Ni-Based Additives. J. Phys. Chem. C 2014, 118, 23376-23384. https://doi.org/10.1021/jp5066677
https://doi.org/10.1021/jp5066677
[54] Au, Y.S.; Yan, Y.; de Jong, K.P.; Remhof, A.; de Jongh, P.E. Pore Confined Synthesis of Magnesium Boron Hydride Nanoparticles. J. Phys. Chem. C 2014, 118, 20832-20839. https://doi.org/10.1021/jp507568p
https://doi.org/10.1021/jp507568p
[55] Ngene, P.; van Zwienen, R.; de Jongh P.E. Reversibility of the Hydrogen Desorption from LiBH4: A Synergetic Effect of Nanoconfinement and Ni Addition. Chem. Commun. 2010, 46, 8201-8203. https://doi.org/10.1039/C0CC03218B
https://doi.org/10.1039/c0cc03218b
[56] Ngene, P.; Verkuijlen M.H.W.; Zheng, Q.; Kragten, J.; van Bentum, P.J.M.; Bitter, J.H.; de Jongh., P.E. The Role of Ni in Increasing the Reversibility of the Hydrogen Release from Nanoconfined LiBH4. Faraday Discuss. 2011, 151, 47-58. https://doi.org/10.1039/c0fd00028k
https://doi.org/10.1039/c0fd00028k
[57] Saldan, I.; Burtovyy, R.; Becker, H.-W.; Ader, V.; Wöll, Ch. Ti-Ni Alloys as MH Electrodes in Ni-MH Accumulators. Int. J. Hydrog. Energy 2008, 33, 7177-7184. https://doi.org/10.1016/j.ijhydene.2008.09.002
https://doi.org/10.1016/j.ijhydene.2008.09.002
[58] Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Wöll, Ch. Surface of Ti-Ni Alloys after their Preparation. J. Alloys Compd. 2009, 470, 568-673. https://doi.org/10.1016/j.jallcom.2008.03.050
https://doi.org/10.1016/j.jallcom.2008.03.050
[59] Li, X.-J.; Song, Z.-W.; Zhao, Y.; Wang, Y.; Zhao, X.-C.; Liang, M.; Chu, W.-G.; Jiang, P.; Liu, Y. Vertically Porous Nickel Thin Film Supported Mn3O4 for Enhanced Energy Storage Performance. J. Colloid Interface Sci. 2016, 483, 17-25. https://doi.org/10.1016/j.jcis.2016.08.006
https://doi.org/10.1016/j.jcis.2016.08.006
[60] Xu, Y.; Menon, A.S.; Harks, P.-P.R.M.L.; Hermes, D.C.; Haverkate, L.A., Unnikrishnan, S.; Mulder, F.M. Honeycomb-Like Porous 3D Nickel Electrodeposition for Stable Li and Na Metal Anodes. Energy Storage Mater. 2018, 12, 69-78. https://doi.org/10.1016/j.ensm.2017.11.011
https://doi.org/10.1016/j.ensm.2017.11.011
[61] Pardillos-Guindet, J.; Metais, S.; Vidal, S.; Court, J.; Fouilloux, P. Electrode Potential of a Dispersed Raney Nickel Electrode During Acetone Hydrogenation: Influence of the Promoters. Appl. Catal. A: Gen. 1995, 132, 61-75.
https://doi.org/10.1016/0926-860X(95)00152-2
https://doi.org/10.1016/0926-860X(95)00152-2
https://doi.org/10.1016/0926-860X(95)00152-2
[62] Jiang, H.; Lu, S.; Zhang, X.; Peng, H.; Qiao, J. Preparation and Application of a Novel Raney Nickel Catalyst for Fix-Bed Reactions. Catal. Commun. 2019, 118, 60-64. https://doi.org/10.1016/j.catcom.2018.10.002
https://doi.org/10.1016/j.catcom.2018.10.002
[63] Kukula, P.; Červený, L. Preparation of Tartaric Acid Modified Raney Nickel Catalysts: Study of Modification Procedure. Appl. Catal. A: Gen. 2001, 210, 237-246. https://doi.org/10.1016/S0926-860X(00)00812-7
https://doi.org/10.1016/S0926-860X(00)00812-7
[64] Kukula, P.; Červený, L. Characterization of Chirally Modified Raney Nickel and Compounds of Tartaric Acid and Nickel. Appl. Catal. A: Gen. 2002, 223, 43-55. https://doi.org/10.1016/S0926-860X(01)00741-4
https://doi.org/10.1016/S0926-860X(01)00741-4
[65] Shim, J.; Lee, H.-K. Improved Performance of Raney Nickel Electrode by the Addition of Electrically Conductive Materials for Hydrogen Oxidation Reaction. Mater. Chem. Phys. 2001, 69, 72-76. https://doi.org/10.1016/S0254-0584(00)00349-7
https://doi.org/10.1016/S0254-0584(00)00349-7
[66] Kiros, Y.; Majari, M., Nissinen, T.A. Effect and Characterization of Dopants to Raney Nickel for Hydrogen Oxidation. J. Alloys Compd. 2003, 360, 279-285. https://doi.org/10.1016/S0925-8388(03)00346-3
https://doi.org/10.1016/S0925-8388(03)00346-3
[67] Barnard, N.C.; Brown, S.G.R.; Devred, F.; Bakker, J.W.; Nieuwenhuys, B.E.; Adkins, N.J. A Quantitative Investigation of the Structure of Raney-Ni catalyst Material Using Both Computer Simulation and Experimental Measurements. J. Catal. 2011, 281, 300-308. https://doi.org/10.1016/j.jcat.2011.05.010
https://doi.org/10.1016/j.jcat.2011.05.010
[68] Devred, F.; Reinhart, G.; Iles, G.N.; Van Der Klugt, B.; Adkins, N.J.E.; Bakker, J.W., Nieuwenhuys, B.E. Synchrotron X-Ray Microtomography of Raney-Type Nickel Catalysts Prepared by Gas Atom Isation: Effect of Microstructure on Catalytic Performance. Catal. Today 2011, 163, 13-19. https://doi.org/10.1016/j.cattod.2010.01.054
https://doi.org/10.1016/j.cattod.2010.01.054
[69] Chade, D.; Berlouis, L.; Infield, D.; Cruden, A.; Nielsen, P.T.; Mathiesen, T. Evaluation of Raney Nickel Electrodes Prepared by Atmospheric Plasma Spraying for Alkaline Water Electrolysers. Int. J. Hydrog. Energy 2013, 38, 14380-14390. https://doi.org/10.1016/j.ijhydene.2013.09.012
https://doi.org/10.1016/j.ijhydene.2013.09.012
[70] Kim, J.-E.; Bae, K.-K.; Park, C.-S.; Jeong, S.-U.; Baik, K.-H.; Kim, J.-W.; Kang, K.-S.; Lee, K.-B.; Kim, Y.-H. Electrochemical Characterization of Raney Nickel Electrodes Prepared by Atmospheric Plasma Spraying for Alkaline Water Electrolysis. J. Ind. Eng. Chem. 2019, 70, 160-168. https://doi.org/10.1016/j.jiec.2018.10.010
https://doi.org/10.1016/j.jiec.2018.10.010
[71] Wang, P.; Zhang, X.; Wie, Y.; Yang, P. Ni/NiO Nanoparticles Embedded Inporous Graphite Nanofibers Towards Enhanced Electrocatalytic Performance. Int. J. Hydrog. Energy 2019, 44, 19792-19804. https://doi.org/10.1016/j.ijhydene.2019.05.121
https://doi.org/10.1016/j.ijhydene.2019.05.121
[72] Jiang, S.; Cheng, Q.; Zou, L.; Zou, Z.; Li, Y.; Zhang, Q.; Gao, Y.; Yang, H. Ni Nanoparticles Supported on Carbon Nanosheets with Tunable N Doping Content for Hydrogen Oxidation Reaction. Chem. Phys. Lett. 2019, 728, 19-24. https://doi.org/10.1016/j.cplett.2019.04.072
https://doi.org/10.1016/j.cplett.2019.04.072
[73] Zhuang, Z.; Giles, S.A.; Zheng, J.; Jenness, G.R.; Caratzoulas, S.; Vlachos, D.G.; Yan, Y. Nickel Supported on Nitrogen-Doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte. Nat. Commun. 2016, 7, 10141. https://doi.org/10.1038/ncomms10141
https://doi.org/10.1038/ncomms10141
[74] Gao, L.; Wang, Y.; Li, H.; Li, Q.; Ta, N.; Zhuang, L.; Fu, Q.; Bao, X. A Nickel Nanocatalyst within a h-BN Shell for Enhanced Hydrogen Oxidation Reactions. Chem. Sci. 2017, 8, 5728-5734. https://doi.org/10.1039/C7SC01615H
https://doi.org/10.1039/C7SC01615H
[75] Skúlason, E.; Tripkovic, V.; Björketun, M.E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J.K. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. J. Phys. Chem. C 2010, 114, 18182-18197. https://doi.org/10.1021/jp1048887
https://doi.org/10.1021/jp1048887
[76] Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. https://doi.org/10.1149/1.1856988
https://doi.org/10.1149/1.1856988
[77] Trasatti, S. Work Function, Electronegativity, and Electrochemical Behaviour of Metals: III. Electrolytic Hydrogen Evolution in Acid Solutions. J. Electroanal. Chem. Interf. Chem. 1972, 39, 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6
https://doi.org/10.1016/S0022-0728(72)80485-6
[78] Tang, M.H.; Hahn, C.; Klobuchar, A.J.; Ng, J.W.D.; Wellendorff, J.; Bligaard, T.; Jaramillo, T.F. Nickel-Silver Alloy Electrocatalysts for Hydrogen Evolution and Oxidation in an Alkaline Electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 19250-19257. https://doi.org/10.1039/c4cp01385a
https://doi.org/10.1039/C4CP01385A
[79] Zhou, Y.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z.; Kaxiras, E.; Zhang, Z. Enhancing the Hydrogen Activation Reactivity of Nonprecious Metal Substrates via Confined Catalysis Underneath Graphene. Nano Lett. 2016, 16, 6058-6063. https://doi.org/10.1021/acs.nanolett.6b02052
https://doi.org/10.1021/acs.nanolett.6b02052
[80] Oshchepkov, A.G.; Bonnefont, A.; Saveleva, V.A.; Papaefthimiou,V.; Zafeiratos, S.; Pronkin, S.N.; Parmon, V.N.; Savinova, E.R. Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media. Top. Catal. 2016, 59, 1319-1331. https://doi.org/10.1007/s11244-016-0657-0
https://doi.org/10.1007/s11244-016-0657-0
[81] Banik, S.; Mahajan, A.; Bhattacharya, S.K. Size Control Synthesis of Pure Ni Nanoparticles and Anodic-Oxidation of Butan-1-ol in Alkali. Mater. Chem. Phys. 2019, 235, 121747. https://doi.org/10.1016/j.matchemphys.2019.121747
https://doi.org/10.1016/j.matchemphys.2019.121747
[82] Guo, X.; Liang, T.; Zhang, D.; Zhang, M.; Lin, Y.; Lai, C. Facile Fabrication of 3D Porous Nickel Networks for Electro-Oxidation of Methanol and Ethanol in Alkaline Medium. Mater. Chem. Phys. 2019, 221, 390-396.
https://doi.org/10.1016/j.matchemphys.2018.09.066
https://doi.org/10.1016/j.matchemphys.2018.09.066
https://doi.org/10.1016/j.matchemphys.2018.09.066
[83] Martins, R.; Quinello, L.; Souza, G.; Marques, M. Polymerization of Ethylene with Catalyst Mixture in the Presence of Chain Shuttling Agent. Chem. Chem. Technol. 2012, 6, 153-162. https://doi.org/10.23939/chcht06.02.153
https://doi.org/10.23939/chcht06.02.153
[84] Rocha, L.F.; Ferreira, L.C.; Marques, M.F. Synthesis and Evaluation of Arylimino Pyridine Nickel(II) Catalysts: Influence of Substituents on Polyethylene Structure. Chem. Chem. Technol. 2015, 9, 421-428. https://doi.org/10.23939/chcht09.04.421
https://doi.org/10.23939/chcht09.04.421
[85] Korchuganova, O.; Tantsiura, E.; Ozheredova, M.; Afonina, I. The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts. Chem. Chem. Technol. 2020, 14, 7-13. https://doi.org/10.23939/chcht14.01.007
https://doi.org/10.23939/chcht14.01.007
[86] Patrylak, L.; Krylova, M.; Pertko, O.; Voloshyna, Y.; Yakovenko, A. n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite. Chem. Chem. Technol. 2020, 14, 234-238. https://doi.org/10.23939/chcht14.02.234
https://doi.org/10.23939/chcht14.02.234
[87] Manukyan, K.V.; Yeghishyan, A.V.; Danghyan, V.; Rouvimov, S.; Mukasyan, A.S.; Wolf, E.E. Structural Transformations of Highly Porous Nickel Catalysts During Ethanol Conversion Towards Hydrogen. Int. J. Hydrog. Energy 2018, 43, 13225-13236. https://doi.org/10.1016/j.ijhydene.2018.04.242
https://doi.org/10.1016/j.ijhydene.2018.04.242
[88] Shafiq, Z.; Ajmal, M.; Kiran, S.; Zulfiqar, S.; Yasmeen, G.; Iqbal, M.; Farooqi, Z.H.; Ahmad, Z.; Sahiner, N.; Mahmood, K. et al. Facile Synthesis of Hydrogel-Nickel Nanoparticle Composites and their Applications in Adsorption and Catalysis. Pure Appl. Chem. 2019, 91, 1567-1582. https://doi.org/10.1515/pac-2018-1201
https://doi.org/10.1515/pac-2018-1201
[89] Ignatovich, Zh.V.; Ermolinskaya, A.L.; Katok Ya.M.; Koroleva, E.V.; Eremin, A.N.; Agabekov, V.E. Catalytic Activity of Nickel Nanoparticles in the Reaction of Reduction of Nitroarenes. Russ. J. G. Chem. 2018, 88, 410-417. https://doi.org/10.1134/S1070363218030064
https://doi.org/10.1134/S1070363218030064
[90] Brož, P.; Hejduková, M.; Vykoukal, V.; Zelenka, F.; Sopoušek, J.; Buršík, J.; Zobač, O. Study of Surface Effects and Catalytic Properties of Selected Ni-Based Bimetallic Nanoparticles by Knudsen Effusion Mass Spectrometry. Calphad 2019, 64, 334-341. https://doi.org/10.1016/j.calphad.2019.01.013
https://doi.org/10.1016/j.calphad.2019.01.013
[91] Tada, S.; Ikeda, S.; Shimoda, N.; Honma, T.; Takahashi, M.; Nariyuki, A.; Satokawa, S. Sponge Ni Catalyst with High Activity in CO2 Methanation. Int. J. Hydrog. Energy 2017, 42, 30126-30134. https://doi.org/10.1016/j.ijhydene.2017.10.138
https://doi.org/10.1016/j.ijhydene.2017.10.138
[92] Paul, W.; Sharma, C. Inorganic Nanoparticles for Targeted Drug Delivery. In Biointegration of Medical Implant Materials. 2-nd ed.; Sharma, C.P., Ed.; Woodhead Publishing Series in Biomaterials: Oxford, 2020, pp 333-373.
https://doi.org/10.1016/B978-0-08-102680-9.00013-5
[93] Hidaka, S.; Okamoto, Y.; Abe, K. Elutions of Metal Ions from Dental Casting Alloys and their Effect on Calcium Phosphate Precipitation and Transformation. J. Biomed. Mater. Res. 1994, 28, 175-180. https://doi.org/10.1002/jbm.820280206
https://doi.org/10.1002/jbm.820280206
[94] Raison-Peyron, N., Guillard, O., Khalil, Z.; Guilhou, J.-J.; Guillot, B. Nickel-Elicited Systemic Contact Dermatitis from a Peripheral Intravenous Catheter. Contact Derm. 2005, 53, 222-225. https://doi.org/10.1111/j.0105-1873.2005.00689.x
https://doi.org/10.1111/j.0105-1873.2005.00689.x
[95] Nosbaum, A.; Rival-Tringali, A.L.; Barth, X.; Damon, H.; Vital-Durand, D.; Claudy, A.; Faure, M. Nickel-Induced Systemic Allergic Dermatitis from a Sacral Neurostimulator. Contact Derm. 2008, 59, 319-320.
https://doi.org/10.1111/j.1600-0536.2008.01434.x
https://doi.org/10.1111/j.1600-0536.2008.01434.x
https://doi.org/10.1111/j.1600-0536.2008.01434.x
[96] Memon, A.A.; Molokhia, M.M.; Friedmann, P.S. The Inhibitory Effects of Topical Chelating Agents and Antioxidants on Nickel-Induced Hypersensitivity Reactions. J. Am. Acad. Dermatol. 1994, 30, 560-565.
https://doi.org/10.1016/S0190-9622(94)70062-1
https://doi.org/10.1016/s0190-9622(94)70062-1
https://doi.org/10.1016/S0190-9622(94)70062-1
[97] Wöhrl, S.; Kriechbaumer, N.; Hemmer, W.; Focke, M.; Brannath, W.; Götz, M.; Jarisch, R. A Cream Containing the Chelator DTPA (Diethylenetriaminepenta-Acetic Acid) Can Prevent Contact Allergic Reactions to Metals. Contact Derm. 2001, 44, 224-228.
https://doi.org/10.1034/j.1600-0536.2001.044004224.x
https://doi.org/10.1034/j.1600-0536.2001.044004224.x
https://doi.org/10.1034/j.1600-0536.2001.044004224.x
[98] Vemula, P.K.; Anderson, R.R.; Karp, J.M. Nanoparticles Reduce Nickel Allergy by Capturing Metal Ions. Nat. nanotechnol. 2011, 6, 291-295. https://doi.org/10.1038/nnano.2011.37
https://doi.org/10.1038/nnano.2011.37
[99] Mo, Y.; Jiang, M.; Zhang, Y.; Wan, R.; Li, J.; Zhong, C.-J.; Li, H.; Tang, S.; Zhang, Q. Comparative Mouse Lung Injury by Nickel Nanoparticles with Differential Surface Modification. J. Nanobiotechnology 2019, 17, 1.
https://doi.org/10.1186/s12951-018-0436-0
https://doi.org/10.1186/s12951-018-0436-0
https://doi.org/10.1186/s12951-018-0436-0
[100] Wang, C.-J.; Chen, T.-C.; Lin, J.-H.; Huang, P.-R.; Tsai, H.-J., Chen, C.-S. One-Step Preparation of Hydrophilic Carbon Nanofiber Containing Magnetic Ni Nanoparticles Materials and their Application in Drug Delivery. J. Colloid Interface Sci. 2015, 440, 179-188. https://doi.org/10.1016/j.jcis.2014.10.073
https://doi.org/10.1016/j.jcis.2014.10.073
[101] Gonçalves, A.A.; Araújo, A.F.; de Mesquita, J.P.; Pires, M.J.M.; Verly, R.M.; Da Silva, L.M.; Franco, D.V. Characterisation of Silica-Supported Fe-Ni Bimetallic Nanoparticles and Kinetic Study of Reductive Degradation of the Drug Nimesulide. J. Environ. Chem. Eng. 2016, 4, 4354-4365. https://doi.org/10.1016/j.jece.2016.09.038
https://doi.org/10.1016/j.jece.2016.09.038