n-Hexane Hydroisomerization on Ni-HMFI Zeolites of Different Preparation Methods
Attachment | Size |
---|---|
full_text.pdf | 78.5 KB |
[1] Dhar, A.; Vekariya, R.L.; Sharma, P. Kinetics and Mechanistic Study of n-Alkane Hydroisomerization Reaction on Pt-doped γ-Alumina Catalyst. Petroleum 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
[2] Mäki-Arvela, P.; Kakakhel, T.A.; Azkaar, M.; Engblom, S.; Murzin, D. Catalytic Hydroisomerization of Long-Chain Hydrocarbons for the Production of Fuels. Catalysts 2018, 8, 534. https://doi.org/10.3390/catal8110534
[3] Dhar, A.; Vekariya, R.L.; Bhadja, P. n-Alkane Isomerization by Catalysis — A Method of Industrial Importance: An Overview. Cogent Chemistry 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
[4] Yoshioka, C.M.N.; Garetto, T.; Cardoso, D. n-Hexane Isomerization on Ni-Pt Catalysts/Supported on HUSY Zeolite: The Influence from a Metal Content. Catal. Today 2005, 107–108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
[5] Jordao, M.H.; Simoes, V.; Cardoso, D. Zeolite Supported Pt-Ni Catalysts in n-Hexane Isomerization. Appl. Catal. A: Gen. 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
[6] Lima, P.M.; Garetto, T.; Cavalcante, C.L. Jr.; Cardoso, D. Isomerization of n-Hexane on Pt–Ni Catalysts Supported on Nanocrystalline H-BEA Zeolite. Catal. Today 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
[7] Martins, G.S.V.; dos Santos, E.R.F.; Rodrigues, M.G.F.; Pecchi, G.; Yoshioka, C.M.N.; Cardoso, D. n-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite. Modern Res. Catal. 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
[8] Patrylak, L.; Pertko, O.; Voloshyna, Yu.; Yakovenko, A; Povazhnyi, V.; Melnychuk, O.; Zlochevskyi, K. Linear Hexane Isomerization over Bimetallic Zeolite Catalysts. Chem. Chem. Technol. 2021, 15, 330–335. https://doi.org/10.23939/chcht15.03.330
[9] Patrylak, L.; Krylova, M.; Pertko, O.; Voloshyna, Yu.; Yakovenko, A. n-Hexane Isomerization over Nickel-Containing Mordenite Zeolite. Chem. Chem. Technol. 2020, 14, 234–238. https://doi.org/10.23939/chcht14.02.234
[10] Schmutzler, F.; Zschiesche, C.; Titus, J.; Poppitz, D.; Freiding J.; Rakoczy, R.; Reitzmann, A.; Gläser, R. Hydroisomerization of Renewable and Fossil n-Alkanes over Bifunctional Dealuminated ZSM-5 Catalysts. Chemie Ingeniuers Technik 2021, 93, 981–989. https://doi.org/10.1002/cite.202000163
[11] Patrylak, L.K.; Krylova, M.M.; Pertko, O.P.; Voloshyna Yu. Linear Hexane Isomerization over Ni-Containing Pentasils. J. Porous Mater. 2019, 26, 861–868. https://doi.org/10.1007/s10934-018-0685-1
[12] Patrylak, L.K.; Manza, I.A.; Vypirailenko, V.I.; Korovitsyna, A.S.; Likhnevskii, R.V. Study of the Mechanism of Hexane Isomerization under Micropulse Conditions. Theor. Exp. Chem. 2003, 39, 263. https://doi.org/10.1023/A:1025729530977
[13] Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by powders and porous solids. Principles, methodology and applications; Academic Press: San Diego, 1999.
[14] Buttersack, C.; Mollner, J.; Hofmann J.; Glaser R. Determination of Micropore Volume and External Surface of Zeolites. Micropor. Mesopor. Mater. 2016, 236, 63–70 https://doi.org/10.1016/j.micromeso.2016.08.018
[15] Pires, J.; Fernandes, R.; Pinto, M.L.; Batista M. Microporous Volumes from Nitrogen Adsorption at 77 K: When to Use a Different Standard Isotherm? Catalysts 2021, 11, 1544. https://doi.org/10.3390/catal11121544
[16] Korkuna, O.; Leboda, R.; Skubiszewska-Zie, J.; Vrublevs’ka, T.; Gun’ko, V.M.; Ryczkowski, J. Structural and Physicochemical Properties of Natural Zeolites: Clinoptilolite and Mordenite. Micropor. Mesopor. Mater. 2006, 87, 243–254. https://doi.org/10.1016/j.micromeso.2005.08.002
[17] Batonneau-Gener, I.;, Sachse, A. Determination of the Exact Microporous Volume and BET Surface Area in Hierarchical ZSM-5. J. Phys. Chem. C 2019, 123, 4235–4242. https://doi.org/10.1021/acs.jpcc.8b11524
[18] Ivanenko, I.; Voronova, A.; Astrelin, I.; Romanenko, Yu. Structural and Catalytic Properties of Ni–Co Spinel and Its Composites. Bull. Mater. Sci. 2019, 42, 172. https://doi.org/10.1007/s12034-019-1854-9
[19] Zhao, W.; Liu, L.; Niu, X.; Yang, X.; Sun, J.; Wang, Q. Reaction Pathways Control of Long-Chain Alkanes Hydroisomerization and Hydrocracking via Tailoring the Metal-Acid Sites Intimacy. Fuel 2023, 349, 128703. https://doi.org/10.1016/j.fuel.2023.128703
[20] Weitkamp, J.; Hunger, M. Acid and Base Catalysis on Zeolites. In Introduction to Zeolite Molecular Sieves; Elsevier, 2007; pp. 787–836.
[21] Vayssilov, G.N.; Rosch, N. Influence of Alkali and Alkaline Earth Cations on the Bronsted Acidity of Zeolites. J. Phys. Chem. B 2001, 105, 4277–4284. https://doi.org/10.1021/jp0041048
[22] Huang, J.; Jiang, J.; Hunger, M. Influence of the Lanthanum Exchange Degree on the Concentration and Acid Strength of Bridging Hydroxyl Groups in Zeolites La, Na-X. Stud. Surf. Sci. Catal. 2007, 170, 622–628.