Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Microwave-Assisted Synthesis of Bis-(Hydroxybenzylidene)-Cycloalkanones via Acid Catalyzed Claisen-Schmidt Condensation

Eunike Adabella1, Cindy A. W. Oei1, Vania A. Rantetasak1, Tutuk Budiati1, Ami Soewandi1
Affiliation: 
1 Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Kalisari Selatan No.1 Kalisari, Pakuwon City, Kec. Mulyorejo, Surabaya, Jawa Timur 60112, Indonesia tutuk@ukwms.ac.id
DOI: 
https://doi.org/10.23939/chcht18.03.350
AttachmentSize
PDF icon full_text.pdf292.69 KB
Abstract: 
In the present study, bis-(hydroxybenzylidene)cycloalkanone derivatives were synthesized by Claisen-Schmidt condensation using cycloalkanones and arylaldehydes in the presence of HCl as an acid catalyst. The synthetic reaction was carried out under microwave irradiation. The structure of the synthesized compounds was determined by UV, IR, 1H NMR spectroscopic methods. The obtained reaction yields were not optimal due to the self-polymerization of p-hydroxybenzaldehyde in an acid solution.
References: 

[1] Zaki, N. W.; Sidiq, M., Qasim, M.; Aranas, B.; Hakamy, A.; Ruwais, N.; Alanezi, H.; Saudi, D. Al, Alshahrani, R. S.; Al-Thomali, A. A.; et al. Biological Activities of Bisdesmethoxycurcumin. J. Nat. Sci. Med. 2020, 3, 219–220. https://doi.10.4103/JNSM.JNSM_65_19
[2] Lin, L.; Lee, K.-H. Structure-Activity Relationships of Curcumin and its Analogs with Different Biological Activities. Stud. Nat. Prod. Chem. 2006, 33, 785–812. https://doi.org/10.1016/S1572-5995(06)80040-2
[3] Bhullar, K. S.; Jha, A.; Youssef, D.; Rupasinghe, H. P. V. Curcumin and its Carbocyclic Analogs: Structure-Activity in Relation to Antioxidant and Selected Biological Properties. Molecules 2013, 18, 5389–5404. https://doi.org/10.3390/molecules18055389
[4] Priyadarsini, K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112. https://doi.org/10.3390/molecules191220091
[5] Nugroho, A.E.; Yuniarti, N.; Estyastono, E.P; Hakim, L. Determination of antioxidant activity of dehydrozingerone through hydroxy radical scavengers using deoxyribosa method. Indonesian Journal of Pharmacy 2006, 116–122.
[6] Revalde, J. L.; Li, Y.; Hawkins, B. C.; Rosengren, R. J.; Paxton, J. W. Heterocyclic Cyclohexanone Monocarbonyl Analogs of Curcumin Can Inhibit the Activity of ATP-Binding Cassette Transporters in Cancer Multidrug Resistance. Biochem. Pharmacol. 2015, 93, 305–317. https://doi.org/10.1016/j.bcp.2014.12.012
[7] Garg, S.; Garg, A. Encapsulation of Curcumin in Silver Nanoparticle for Enhancement of Anticancer Drug Delivery. Int. J. Pharm. Sci. Res. 2018, 9, 1160–1166. https://doi.org/10.13040/IJPSR.0975-8232.9(3).1160-66
[8] Yadav, G. D.; Wagh, D. P. Claisen-Schmidt Condensation using Green Catalytic Processes: A Critical Review. ChemistrySelect 2020, 5, 9059–9085. https://doi.org/10.1002/slct.202001737
[9] Handayani, S.; Budimarwanti, C.; Haryadi, W. Microwave-Assisted Organic Reactions: Eco-friendly Synthesis of Dibenzylidenecyclohexanone Derivatives via Crossed Aldol Condensation. Indones. J. Chem. 2017, 17, 336–341. https://doi.org/10.22146/ijc.25460
[10] Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, 2005.
[11] Gunawan, R; Nandiyanto, A. B. D. How to Read and Interpret 1H NMR and 13C-NMR Spectrums. Indones. J. Sci. Technol. 2021, 6, 267–298. https://doi.org/10.17509/ijost.v6i2.34189
[12] Saunders, K. J. Organic Polymer Chemistry, 2nd eds.; Chapman and Hall, UK, 1988.
[13] Sankhavara, D. B.; Chopda, J. V.; Patel, J. P.; Parsania, P. H. Synthesis, Spectral and Thermal Study of (2E, 6E) 2,6-bis(4-hydroxy benzylidene)-4-R-cyclohexanone. World Sci. News 2019, 123, 141–160. http://www.worldscientificnews.com/wp-content/uploads/2019/02/WSN-123-20...
[14] Vatsadze, S. Z.; Gavrilova, G. V.; Zyuz’kevich, F. S., Nuriev, V. N.; Krut’ko, D. P.; Moseeva, A. S.; Shumyantsev, A. V.; Vedernikov, A. I.; Churakov, A.V.; Kuz’mina, L. G. et al. Synthesis, Structure, Electrochemistry, and Photophysics of 2,5dibenzylidenecyclopentanones Containing in Benzene Rings Substituents Different in Polarity 2016, 65, 1761–1772. https://doi.org.10.1007/s11172-016-1508-7
[15] Deokate, M. D.; Joshi, R. S.; Gaikwad, S. V.; Lokhande, P. D. Synthesis of 2,6-dibenzylidenecyclohexanone and E-7-benzylidene-3-phenyl-3,3a,4,5,6,7-hexahydro-2H-indazole. J. Emerg. Technol. Innov. Res. 2017, 4, 25–29.
[16] Du, Z.; Liu, R.; Shao, W.; Mao, X.; Ma, L.; Gu, L.; Huang, S.; Chan, A. S. C. α-Glucosidase Inhibition of Natural Curcuminoids and Curcumin Analogs. Eur. J. Med. Chem. 2006, 41, 213–218. https://doi.org.10.1016/j.ejmech.2005.10.012
[17] Martha, R. D.; Wahyuningsih, T. D.; Anwar, C. Sintesis Analog Kurkumin 2,6-bis-(E)-4-hidroks-3-metoksibenzilidin)-sikloheksa-1-on Berbahan Dasar Vanilin Dengan Katalis HCl. JPS 2020, 25, 195–204. https://journal.uny.ac.id/index.php/saintek
[18] Du, Z. Y.; Bao, Y. D.; Liu, Z.; Qiao, W.; Ma, L.; Huang, Z. S.; Gu, L. Q.; Chan, A. S. C. Curcumin Analogs as Potent Aldose Reductase Inhibitors. Arch. Pharm. 2006, 339, 123–128. https://doi.10.1002/ardp.200500205
[19] Murtisiwi, L. Sintesis 2,5-bis(4-hidroksibensilidin)siklopentanon dari p-hidroksibenzaldehid dan siklopentanon dengan katalis asam sulfat. J. Pharm. 2012, 1, 1–12.
[20] Handayani, S.; Matsjeh, S.; Anwar, C.; Atun, S.; Fatimah, I. Novel Synthesis of 1,5-Dibenzalacetone Using NaOH/ZrO2-Montmorillonite as Cooperative Catalyst. Int. J. Chem. Anal. Sci. 2012, 3, 1419–1424.