MESOPHASE MICROSPHERES FROM DISTILLATION AND THERMAL TREATMENT OF COAL TAR

Rocio Martіnez-Flores1, J. E. Camporredondo-Saucedo2, H.A. Moreno-C3, G. Gonzalez-Zamarripa4, M. Corona-Romo1, Witold Brostow5, Haley E. Hagg Lobland5
Affiliation: 
1 Universidad Autonoma de Coahuila, Blvd. V. Carranza S/N, Saltillo, Coah. 25280, Mexico 2 Universidad Autonoma de Coahuila, Calle Barranquilla S/N Col. Guadalupe, Monclova, Coah. 25750, Mexico 3 Tecnologico Nacional de Mexico, Instituto Tecnologico de la Laguna, Blvd. Revolucion y Czda. Cuauhtemoc S/N, Torreon, Coah., Mexico 4 Universidad Politecnica de Monclova-Frontera, Av. Las Granjas 602, Monclova, Coah. 25720, Mexico 5 LAPOM, Department of Materials Science and Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, USA wkbrostow@gmail.com
DOI: 
https://doi.org/10.23939/chcht11.02.230
AttachmentSize
PDF icon full_text.pdf708.08 KB
Abstract: 
We have investigated the formation of mesophase carbon microbeads in tar pitch generated by the coal coking in a steelmaking plant. Pitches were obtained at different distillation temperatures (643, 673 and 723 K). The distilled samples were then thermally treated in nitrogen atmosphere either at 723 K for 8 h (T1) for at 703 K for 4 h (T2). A new phase appears, seen in optical microscopy with a polarizing filter. Samples subjected to the T1 thermal treatment were found to form a discontinuous fluid phase distinct from the main phase. Formation of mesophase carbon microbeads is seen also in samples subjected to the T2 treatment, with the particle diameters from 30 to 60 µm. The microbeads can be used as precursors for the synthesis of graphitic materials.
References: 

[1] Miller D., Lewis I., Chang C., Lewis, R.T.: US Patent WO 2009/142807 A2, 2009.

[2] Perez M., Granda M., Santamaría R. et al.: Fuel, 2004, 83, 1257. https://doi.org/10.1016/j.fuel.2003.11.012
https://doi.org/10.1016/j.fuel.2003.11.012

[3] Areshidze G., Barbakadze K., Brostow W. et al.: Mater. Sci. Medziagotyra 2010, 16, 170.

[4] Cheng X., Zha Q., Li X., Yang X.: Fuel Process. Technol., 2008, 89, 1436. https://doi.org/10.1016/j.fuproc.2008.07.003
https://doi.org/10.1016/j.fuproc.2008.07.003

[5] Alcaniz-Monge J., Cazorla-Amoros D., Linares-Solano A.: Fuel, 2001, 80, 41. https://doi.org/10.1016/S0016-2361(00)00057-0
https://doi.org/10.1016/S0016-2361(00)00057-0

[6] Twigg A., Taylor R., Marsh K., Marr G.: Fuel, 1987, 66, 28. https://doi.org/10.1016/0016-2361(87)90207-9
https://doi.org/10.1016/0016-2361(87)90207-9

[7] Rodriguez F.: Carbon, 1998, 36, 159. https://doi.org/10.1016/S0008-6223(97)00173-5
https://doi.org/10.1016/S0008-6223(97)00173-5

[8] Marsh H., Martı́nez M., Rodrı́guez F.: Carbon, 1999, 37, 363. https://doi.org/10.1016/S0008-6223(98)00205-X
https://doi.org/10.1016/S0008-6223(98)00205-X

[9] Jones S., Hildebrandt R., Hedlund M.: Influence of High-Sulfur Cokes on Anode Performance. Light Metals, the Metallurgical Society of AIME, Warrendalem 1979.

[10] Panaitescu C., Predeanu G.: Int. J .Coal Geol., 2007, 71, 448. https://doi.org/10.1016/j.coal.2006.11.003
https://doi.org/10.1016/j.coal.2006.11.003

[11] Mochida R., Kudo K., Fukuda N., Takeshita K.: Carbon, 1975, 13, 135. https://doi.org/10.1016/0008-6223(75)90270-5
https://doi.org/10.1016/0008-6223(75)90270-5

[12] Yamaguchi C., Mondori J., Matsumoto A. et al.: Carbon, 1995, 33, 193. https://doi.org/10.1016/0008-6223(94)00127-L
https://doi.org/10.1016/0008-6223(94)00127-L

[13] Fernandez A., Granda M., Bermejo J. et al.: Energ. Fuel., 1995, 12, 949. https://doi.org/10.1021/ef9800258
https://doi.org/10.1021/ef9800258

[14] Tascon J.: Opt. Pura Apl., 2007, 40, 149.

[15] Moriyama R., Hayashi J., Goda R., Chiba T.: Mater. Chem. Phys., 2005, 92, 205.
https://doi.org/10.1016/j.matchemphys.2005.01.019

https://doi.org/10.1016/j.matchemphys.2005.01.019
https://doi.org/10.1016/j.matchemphys.2005.01.019

[16] Moriyama R., Hayashi J., Suzuki K. et al.: Carbon, 2002, 40, 53. https://doi.org/10.1016/S0008-6223(01)00070-7
https://doi.org/10.1016/S0008-6223(01)00070-7

[17] Moriyama R., Hayashi J., Chiba T.: Carbon, 2004, 42, 2443. https://doi.org/10.1016/j.carbon.2004.04.044
https://doi.org/10.1016/j.carbon.2004.04.044

[18] Kremer H., Cukier S.: J. Microscopy, 1983, 132, 303. https://doi.org/10.1111/j.1365-2818.1983.tb04596.x
https://doi.org/10.1111/j.1365-2818.1983.tb04596.x

[19] Yang Y., Wang C., Chen M., Zheng J.: Fuel Process. Technol., 2011, 92, 154. https://doi.org/10.1016/j.fuproc.2010.08.024
https://doi.org/10.1016/j.fuproc.2010.08.024

[20] Petrova B., Tsyntsarski B., Budinova T. et al.: Fuel Process. Technol., 2010, 91, 1710.
https://doi.org/10.1016/j.fuproc.2010.07.008

https://doi.org/10.1016/j.fuproc.2010.07.008
https://doi.org/10.1016/j.fuproc.2010.07.008

[21] Agarwal R., Bhatia G., Bahl O., Punjabi N.: J. Mater. Sci., 2000, 35, 5437. https://doi.org/10.1023/A:1004871601753
https://doi.org/10.1023/A:1004871601753

[22] Norfolk C., Kaufmann A., Mukasyan A., Varma A.: Carbon, 2006, 44, 301. https://doi.org/10.1016/j.carbon.2005.07.019
https://doi.org/10.1016/j.carbon.2005.07.019

[23] Gao Y., Song H., Chen X.: J. Mater. Sci., 2003, 38, 2209. https://doi.org/10.1023/A:1023740517269
https://doi.org/10.1023/A:1023740517269

[24] Zhou C., McGinn P.: Carbon, 2006, 44, 1673. https://doi.org/10.1016/j.carbon.2006.01.004
https://doi.org/10.1016/j.carbon.2006.01.004

[25] Zhang L., Zhao X., Xia D.: Mater. Lett., 2005, 59, 3448. https://doi.org/10.1016/j.matlet.2004.06.083
https://doi.org/10.1016/j.matlet.2004.06.083

[26] Li T., Wang C., Liu X. et al.: Fuel Process. Technol., 2005, 87, 77. https://doi.org/10.1016/j.fuproc.2005.07.003
https://doi.org/10.1016/j.fuproc.2005.07.003

[27] Liu Z., Guo Q., Song G., Liu L.: Carbon, 2007, 45, 146. https://doi.org/10.1016/j.carbon.2006.07.013
https://doi.org/10.1016/j.carbon.2006.07.013

[28] Wang Z., Wu B., Gong Q. et al.: Mater. Lett., 2008, 62, 3585. https://doi.org/10.1016/j.matlet.2008.04.001
https://doi.org/10.1016/j.matlet.2008.04.001

[29] Concheso A., Santamaría R,. Menéndez R. et al.: Carbon, 44, 2006, 1762. https://doi.org/10.1016/j.carbon.2005.12.037
https://doi.org/10.1016/j.carbon.2005.12.037

[30] Song Z., Li S., Zhai G., Shi J. et al.: Carbon, 2008, 46, 1100. https://doi.org/10.1016/j.carbon.2008.03.018
https://doi.org/10.1016/j.carbon.2008.03.018

[31] Menard K.: Thermal Transitions and Their Measurement [in:] Brostow W. (Ed.), Performance of Plastics, Hanser, Munich – Cincinnati 2000, Ch. 8.

[32] Brostow W., Hagg Lobland H.: Materials: Introduction and Applications, Wiley, New York 2017.

[33] Lavin-Lopez M., Valverde J., Sanchez-Silva L., Romero A.: Ind. Eng. Chem. Res., 2016, 55, 845. https://doi.org/10.1021/acs.iecr.5b03502
https://doi.org/10.1021/acs.iecr.5b03502

[34] Tertyshna O., Royenko K., Martynenko V. et al.: Chem. Chem. Technol., 2016, 10, 361. https://doi.org/10.23939/chcht10.03.361
https://doi.org/10.23939/chcht10.03.361

[35] Lucas E., Spinelli L.: J. Mater. Ed., 2005, 27, 43.

[36] Middea A., de Mello Monte M., Lucas E.: Chem. Chem. Technol., 2008, 2, 91.

[37] de Melo M., Lucas E.: Chem. Chem. Technol. 2008, 2, 295.

[38] Ramalho J., Ramos N., Lucas E.: Chem. Chem. Technol., 2009, 3, 53.

[39] Lucas E., Mansur C., Spinelli L., Queiros Y.: Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21
https://doi.org/10.1351/PAC-CON-08-07-21

[40] Pacheco V., Spinelli L., Lucas E., Mansur C.: Energ. Fuel., 2011, 25, 1659. https://doi.org/10.1021/ef101769e
https://doi.org/10.1021/ef101769e

[41] da Silva C., Barros C., Queiros Y. et al.: Chem. Chem. Technol., 2012, 6, 415.

[42] Lazorko O., Bratychak M., Pyshev S.: Chem. Chem. Technol., 2008, 4, 309.

[43] Pyshev S., Gunka V., Astakhova O. et al.: Chem. Chem. Technol., 2012, 6, 443.